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A B S T R A C T   A R T I C L E   I N F O 

 

This study investigated the capability of a group of agents to 
form a desired shape formation by designing the feedback con-
trol using a linear quadratic regulator. In real application, the 
state condition of agents may change due to some particular 
problems such as a slow input response. In order to compensate 
for the problem that affects agent-to-agent coordination, a ro-
bust regulator was implemented into the formation algorithm. In 
this study, a linear quadratic regulator as the full-state feedback 
of robust regulator method for shape formation was considered. 
The result showed that a group of agents can form the desired 
shape (square) formation with a modification of the trajectory 
shape of each agent. The results were validated through numeri-
cal experiments. 
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1. INTRODUCTION 

Formation control is an important as-
pect of agent coordination. It has attract-
ed tremendous attention from research-
ers due to its benefit in many applications 
such as an exploration of group robots 
(Burgard et al., 2005, 2000), surveillance 
(Roman-Ballesteros & Pfeiffer, 2006), un-
manned quadrotor aerial formation (Fikri 
et al., 2018; Hou & Fantoni, 2016), and 
spacecraft formation guidance (Beard et 
al., 2001; Beard & Hadaegh, 1999). 

The requirement to achieve a desired 
formation shape has been investigated by 
considering the relativity of the position 
and velocity of the agent. Several works 
have been conducted such as individual 
motion in nature (Fax & Murray, 2004), 
decentralized schemes (Lafferriere et al., 
2005),  and potential field (Zavlanos & 
Pappas, 2007) to perform the shape for-
mation control. 

 In other researches, the feedback 
scheme method (Fax & Murray, 2004; 
Lafferriere et al., 2005) has been pro-
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posed. This scheme associated with a di-
rected graph has been investigated by (Liu 
et al., 2019; Wu et al., 2011). However, 
the proposed systems are less robust 
when the state matrix does not follow the 
setting (Lafferriere et al., 2005). To keep 
the formation in the desired form, it re-
quires the change of the state condition 
to be sustained.  

In this paper, we propose a linear 
quadratic regulator, LQR, as the feedback 
control method to improve the system 
robustness toward the change of state 
feedback. The proposed method enables 
the agent to move following a different 
trajectory to create a square shape for-
mation. The paper is outlined as follow. 
Section 2 provides the method of how the 
graph theory can be implemented into a 
feedback control system and also the em-
ployed agents model. Moreover, it also 
explains how the full-state feedback is 
formulated. After the formulation is 
achieved, we validate the state feedback 
with numerical analysis to prove its capa-
bility. Then, a discussion on the numerical 
analysis result is given in section 3. We 
close this paper with a conclusion and fu-
ture work in section 4. 

2. METHODOLOGY  

In this section, the method on how the 
graph theory can be implemented into a 
feedback control is delivered. The content 
based on the introduction of graph theo-
ry, problem statement, and the design of 
Linear Quadratic Regulator (LQR) feed-
back control.  

  
2.1. Graph Theory 

The graph is used to model the com-
munication among agents. A graph  is 
defined by a pair of a finite set of nodes  
and a set of edges , or 

. An edge is represented by an 

ordered pair of nodes, i.e. . 

The pair  if node  points towards 

node . The set of neighbors of node  is 

. Below is 

the important definition of the graph. 

Definition 1: (Lewis, F., Zhang, H., 
Hengster-Movric, K., Das, 2014)   

A graph is said to be an undirected graph 
if  and also if it is a bidirec-

tional and the weights of the edge  

and  are the same.  

The adjacency matrix associated with 
the graph  is , where: 

  (1) 

To apply the graph to our model, the 
Laplacian matrix is used. We define 

 s.t  and 

 for . Agents need to ex-

change the information, where the Lapla-
cian matrix follows (Mesbahi and Eger-
stedt, 2010). The Laplacian matrix can be 
also expressed as:  

  (2) 

Here,  denotes the degree matrix of 

graph . Thus, the following result will be 

used in this paper. 

Lemma 1: (Ren & Beard, 2005)  

Let be the Laplacian matrix associated 

with undirected graph  has the follow-

ing properties: 

i. 0 is an eigenvalue of  with eigenvec-

tor , 

ii. The nonzero eigenvalues of  have a 

positive real part, 

iii. 0 is a simple eigenvalue of  if and 

only if graph  is connected. 

2.2. Problem Statement 

In this work, we consider  agents 

given by the following: 
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 (3) 

where  is a state of agent , 

 is the control input of agent  for 

. Meanwhile,  and  are 

the state and input matrices of appropri-
ate size.  

The state  consists of two elements, 

 and , where  and  are 

position and velocity respectively. Then, 
 or  

 (4) 

where  denotes the Kronecker product. 

The Kronecker product corresponds with 
the configuration state of the individual 
agent. 

We assume the state matrix to be of 
the form:  

  (5) 

where  for , 

and 

   (6) 

Definition 3: Let the formation denotes by 
vector 

  (7) 

Where . The for-

mation  is reached if and only if 

for all 

. This is illustrated in Figure 1. 

The goal of the output feedback is 
to steer the agents to the desired for-
mation. We define the error of output 
function  based on the average of rela-

tive displacement of the neighboring 
agents. 

 (8) 

where . Let . 

 

Figure 1. Illustration of agents in a square for-
mation  

We can write the overall system as: 

   (9) 

   (10) 

with  and . 

Remark 1: By referring to Definition 3 and 
(10), the agents can be said are in for-
mation if only if z = 0. 

Problem 1: The objective in this paper is 
to design control input u_i by using the 
output vector z_i such that the formation 
h is achieved. 

2.3. LQR Feedback Control 

We consider a single system of the 
optimal feedback control using linear 
quadratic regulator (LQR), where the sys-
tem is described by: 

   (11) 

where is state,  is control input. To 
stabilize the system (11), the control input 
is designed to minimize the cost function: 

 (12) 

Here,  is symmetric positive 
semidefinite matrix , and is 

 symmetric positive definite matrix 
. Thus, the optimization can be 

written as 
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 (13) 

The control input is assumed to have the 
form 

    (14) 

To find , we define it as: 

 (15) 

where equation (15) gives the optimal 
control of . Thus the optimal control 

that we can obtain is defined by: 

 (16) 

where,  in (15) follows the solution to 

Algebraic Riccati Equation (ARE) of  

symmetric which defines by: 

(17) 

 Then, LQR in the systems can be 
achieved by following several steps: 

1. Given , and  the state matrix 

2. Select , and  for regulator matrix 

3. Solve using ARE to find . 

4. Compute , and 

5. Choose the solution of  which yields 

the state of the systems. 

3. RESULT AND DISCUSSION 

To solve problem 1, the following is 
the proposed control input. 

    (18) 

where , and  is a feedback 

matrix. Thus, the closed-loop system for 
agent  can be written as: 

 (19) 

Meanwhile, The overall closed-loop sys-
tem can be written as: 

  (20) 

where  . Following the ma-

trix states of , and . The following is 

the main result of this paper. 

Proposition 1. Consider  agents given by 

(3) with the control input given by (11). 
Suppose the graph  is connected. The 

formation  is achieved if and only if 

 is Hurwitz, where  is the 

smallest nonzero eigenvalue of . 

To show the above proposition holds, 
we consider the following problem exam-
ple.  We conduct the numerical experi-
ment by given the agent  with con-
sideration a square is the targeted shape 
formation. Here, several parameters we 
include in our numerical experiment. First, 
we state, 

 

 

The value in the matrix  will be 
changed to know the capability of the 
proposed method to form a stable for-
mation.  Then, to develop the square for-
mation which is stable in the numerica 
analysis we follow (7) by giving a set of   

by, 
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The feedback control design using 
LQR which is shown in the (13) we set , 

and  matrices as: 

 

 =  

To  form a square formation, the ad-
jacency and the degree matrix of the for-
mation is set to be 

 

And 

 

Then, the graph established from the 
degree matrix and adjacency matrix is 
shown in Figure 2. 

The graph is set not automatically. In 
this study, to form the graph is based on 
the degree matrix and the adjacency ma-
trix. Thus, Eigenvalue of the Laplacian ma-
trix is, 

 

Thus, . By Proposition 1, to 
reach the formation,  we must ensure that 
the eigenvalue of  is stable. Us-
ing the LQR method explained in section 2 
and the Q and R matrices given above, the 
feedback matrix  is: 

 

 

 

 

 
Figure 2. Illustration of graph topological net-

work 

Then, we have the eigenvalue of 
 given in the array below. 

 

The  is Hurwitz. Then, the 
square shape formation can be achieved 

by following the value of . The result of 
the setting is shown in Figure 3. 

The initial position of the four agents 
is set by choosing a random position. As 
we can see, the agents form a square 
formation while they are also tracking an 
elliptical trajectory at their respective po-
sition. The trajectory is a function of the 
initial state. We show that agents track a 
different trajectory by setting different 
initial states. This result is shown in Figure  
4. 
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Figure 3. The formation established by four agents with a random 
initial position 

 

 
Figure 4. The formation established by four agents with a non-

random initial position. 
 

Furthermore, we show the result 
when at least one of the eigenvalue of 

 has a positive real part. This is 

done by using . The 

result yields some of the eigenvalues have 
positive real parts and the formation is 
not achieved. In this study, the result of 
unachievable formation is not discussed. 

4. CONCLUSION 

We have successfully designed a 
feedback control for multi-agent systems 
to established a square shape formation 
using Linear Quadratic Regulator (LQR). 
The output control is established based on 
the control input that is designed through 
LQR to compensate the stability of the 
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formation, where the design gives a result 
of a stable eigenvalue. Thus, the square 
shape formation can be achieved. In addi-
tion, the trajectory shape of the agents 
also can be modified, where the stability 
of the trajectory while creating a shape 
fomation is affected by the LQR. In the 
future, investigation on the shape for-

mation control using switching graph will 
be considered. 
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