Finite Element Simulation of Power Weeder Machine Frame

Angger Bagus Prasetiyo1, Kartinasari Ayuhikmati Sekarjati2

1 Department of Mechanical Engineering, Faculty of Industrial Technology, Institut Teknologi Nasional Yogyakarta, Indonesia
2 Department of Industrial Engineering, Faculty of Industrial Technology, Institut Sains & Teknologi AKPRIND Yogyakarta, Indonesia
Correspondence: E-mail: angger.bagus@itny.ac.id

ABSTRACT

One of the agricultural technologies that have evolved recently is the weeding machine. This device was developed to aid farmers in the weed-control procedure. The engine frame is one of the primary elements of the weed wacker. The most crucial component of agricultural equipment is the frame or chassis since it serves as the foundation for mounting other parts. To examine the stress and strength of the frame, this study models the frame of a power weeder machine utilizing finite element analysis using the SolidWorks 2022 program. A total load of 120 N is applied to the AISI 316L used for the frame. The analysis's findings indicate that the maximum von Mises stress value is about 2.51 10^7 N/m^2, the greatest deformation is 0.556 mm, and the safety factor is 6.8. With AISI 316L material, the frame design of the power weeder machine in this study is safe to endure up to 140 N.

1. INTRODUCTION

Many ergonomic studies have been conducted on operator comfort and safety during field operations due to the significant importance of agricultural work in a nation. In addition, there is necessity to have a better design in order to gain higher productivity, to increase comfort, and to increase safety (Upendar et al., 2018). Machines become more and more prevalent in daily life, which makes human labor easier and more productive (Oktaviandri and Paramasivam, 2020). One of the agricultural technologies currently being explored is the weeding machine. This device was created to aid farmers in the weed-control procedure. The engine frame is one of the primary elements of the weed wacker.

The most crucial component of agricultural equipment is the frame or chassis since it serves as the foundation for mounting other parts. To support the ma-
Prior to manufacture the machine, a design must be created using computer design technology (CAD/CAM). This technology can reduce major expenses associated with design flaws (Chirende, Li, and Vheremu 2019; Cekus et al., 2019). Design optimization can reduce manufacturing errors and can lengthen the product’s service life (Vegad and Yadav, 2018). Technology-based design optimization has been used by cutting-edge businesses working in mechanics and other types of structures (Gheorghe et al., 2018). Software like SolidWorks and ANSYS (Al-Shammari and Al-Waily, 2018; Al-Shammari and Abdullah, 2018) uses finite element analysis techniques as an efficient tool to discover solutions to challenging problems and can solve many engineering difficulties effectively (Al-Shammari et al., 2020).

The power weeder machine frame needs to be analyzed using the finite element analysis method to assess its strength. This approach has been widely used by designers and engineers to analyze Von Misses stress, displacement, and safety factors (Lu et al., 2019), optimize a design, carry out theoretical calculations (Lai, Yu, and Dong, 2019; Kešner et al., 2021), and numerical simulation for forecasting a material’s strength and confirming the loading force (Azimi-Nejadian et al., 2019; Yin and Xu, 2018). Numerical analysis can also be used to determine the impact of deformation and safety factor of a design (Prasetiyo, Sekarjati, and Har- yo, 2022).

The results from earlier research that used the finite element approach to assess the level of strength of bicycle frame constructions consisting of composites and steel revealed that while the von Misses stress was higher, the deformation and strain values were lower (Kubasad, 2018). The strength of the frame of the weed-eating machine was next examined in more detail using the finite element approach and various load changes. The findings indicate that the safety factor’s value rises as the load increased (Suprapto and Wibawa, 2021).

Based on the aforementioned description of the issue, the goal of this study is to use SolidWorks 2022 software and the finite element analysis method to examine the weed-weeding machine’s frame construction. The minimum value of the safety factor is one of the references used as a gauge of a design’s safety (Elishakoff, 2004). Engineers frequently
utilize an object's safety factor as a reference metric when determining how much stress it can withstand (Wang et al., 2019). A material's capacity to sustain dynamic loads and shock loads determines how safe it is (K. Z. V. Dobrovolsky, 1973). This study's results include von Mises stress, displacement, and safety factor.

2. RESEARCH METHODOLOGY

Von Misses stress, displacement, and safety factor are among the simulation outcome parameters. The following equation can be used to calculate theoretically the value of strain and stress:

\[
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz}
\end{bmatrix} = \frac{E}{(1 + \nu)(1 - 2\nu)} \begin{bmatrix}
\varepsilon_x + \nu \varepsilon_y + \nu \varepsilon_z \\
\varepsilon_y + (1 - \nu) \varepsilon_x + \varepsilon_z \\
\varepsilon_z + \varepsilon_x + (1 - \nu) \varepsilon_y
\end{bmatrix}
\]

where \(\sigma \) is stress, \(\varepsilon \) is strain, \(\nu \) is poison ratio dan \(E \) is modulus young of material. The following equation can be used to calculate the safety factor's value:

\[
SF = \frac{\sigma_{max}}{\sigma_{max \ material}}
\]

where \(SF \) is a safety factor, \(\sigma_{max} \) is allowable material stress, \(\sigma_{max \ material} \) is stress on the material.

2.1. Finite Element Analysis

The software can now be used to address technical issues, and the results can be used to demonstrate if a product is damaged or worn, or even whether it performs as intended (Jweeg et al., 2021). By breaking down the resulting item into elements using the finite element analysis approach, SolidWorks is one of the programs used to solve engineering issues that are described by partial differential equations (Al-Waily and Ali, 2015; Chiad, Al-Waily, and Al-Shammari, 2018). Three linked file types are produced by SolidWorks' use of parametric design principles: components, assemblies, and drawings.

The other two files will therefore be updated if any changes are made to one of these three files. SolidWorks can examine issues to find the best design so that products don't need to be manufactured or manufactured before an error occurs, saving time and money and lowering the number of prototypes needed. SolidWorks can show every component of the design in detail, to check accurate mass properties, and to check problems (Suprapto and Wibawa, 2021).

Differential equations are typically challenging to solve analytically, necessitating help to complete these tasks. Partial differential equations can be converted into linear algebraic equations using the finite element approach (Stolarski, T.; Nakasone, T.; Yoshimoto, 2006). The finite element approach can be used to tackle a variety of issues, including issues with structural analysis, buckling (buckling), and vibration analysis (Dantulwar, Maske, and Patel, 2017; Popa et al., 2021). Structural analysis is the finite element analysis technique that is most widely employed.

The term "structure" in this context refers to mechanical, aeronautical, and naval structures as well as buildings and bridges. The static structural analysis ignores the effects of inertia and damping while accounting for displacements, stresses, strains, and forces on the structure as a result of loading. Both linear and nonlinear analyses of static structures are possible (Ansys Release 2013; Ansys Release Documentation, 2005). It is possible to examine a structure's failure to reduce the fault function, produce reliable solutions, and address technical issues (Doustdar and Kazemi, 2019).

2.2. Model and Materials

SolidWorks 2022 software was used to assist in the design of the power weeder machine frame model. To make it simpler for farmers to operate, the frame was
designed in accordance with the conditions in the field. The frame’s design also allows for simple construction and mobility. Figure 1 depicts the power weeder machine’s frame design.

![Figure 1. Power weeder machine frame](image)

AISI 316L was the material utilized in the construction of the power weeder machine frame in this study. It was chosen because it is heat- and corrosion-resistant (Kelly, 2015). Table 1 provides an overview of the parameters used in the simulation.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name Material</td>
<td>AISI Type 316L</td>
</tr>
<tr>
<td>Model type</td>
<td>Isotropic</td>
</tr>
<tr>
<td>Yield Strength</td>
<td>1,7x10^8 N/m²</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>4,85x10^8 N/m²</td>
</tr>
<tr>
<td>Elastic Modulus</td>
<td>2x10^11 N/m²</td>
</tr>
<tr>
<td>Poison’s Ratio</td>
<td>0,265</td>
</tr>
<tr>
<td>Mass Density</td>
<td>8,027 kg/m²</td>
</tr>
<tr>
<td>Shear Modulus</td>
<td>8,2x10^10 N/m²</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>1,65x10³ /Kelvin</td>
</tr>
<tr>
<td>Load Machine</td>
<td>80 N</td>
</tr>
<tr>
<td>Load Cultivator Tiller</td>
<td>40 N</td>
</tr>
<tr>
<td>Load</td>
<td>20 N</td>
</tr>
</tbody>
</table>

Table 1. AISI 316L simulation parameters

2.3. Mesh simulation modeling

Mesh has an impact on computational modelling utilizing the Finite Element Analysis (FEA) technique (Doustdar and Kazemi, 2019). In a simulation, mesh is a process that has a high level of complexity (Sosnowski et al., 2018). Mesh results have a significant impact on the simulation’s convergence outcomes (Sosnowski, Krzywanski, and Scurek, 2019; Prasetiyo et al., 2019). The simulation may fail as a result of an error made during creating the mesh, which means that mesh generation process must be reperformed, which is time-consuming. The findings is more accurate with smaller meshes, but the simulation procedure takes longer. (García Pérez and Vakkilainen, 2019; Prasetiyo et al., 2019).

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh Type</td>
<td>Tetrahedral</td>
</tr>
<tr>
<td>Mesher Used</td>
<td>Curvature</td>
</tr>
<tr>
<td>Maximum Element</td>
<td>2,69609 cm</td>
</tr>
<tr>
<td>Minimum Element</td>
<td>0,539218 cm</td>
</tr>
<tr>
<td>Mesh Quality</td>
<td>Draft</td>
</tr>
<tr>
<td>Total Nodes</td>
<td>7808</td>
</tr>
<tr>
<td>Total Elements</td>
<td>25599</td>
</tr>
<tr>
<td>Maximum Aspect Ratio</td>
<td>2.558,3</td>
</tr>
<tr>
<td>Percentage Aspect Ratio <3</td>
<td>91,6 %</td>
</tr>
<tr>
<td>Percentage Aspect Ratio >10</td>
<td>0,43 %</td>
</tr>
</tbody>
</table>

Table 2. Mesh distribution information

Hexahedral mesh, polyhedral mesh, and tetrahedral mesh are some of the mesh types utilized in computational fluid dynamics (CFD) simulation (Chen et al., 2021; Sosnowski et al., 2018b). The tetrahedral mesh was employed in this study because it is more effective for simulating stress distributions (Hutton, 2003) and CFD simulations are frequently used in irregular geometries (Chen et al., 2021). Overall, Table 2 provides thorough information on the mesh distribution used in this investigation.

Calculations utilizing the finite element approach must be performed using a computer due to many equations involved. This approach is cost and time efficient while also ensuring the accuracy of the results. The fundamental idea behind the finite element approach is to discretize an item into a finite number of parts. This section takes the shape of a triangle, with each element being a linear quadrilateral connected by a node (node). Further information on this is shown on Figure 2.
3. RESULTS AND DISCUSSION

3.1. Von Mises Stress

The material choice and frame design must be based on the maximum value of working stress, analysis of the stresses occurring on a structure is crucial. Based on the findings of the uniaxial tensile test, the von Mises stress is utilized to forecast the yield of materials subjected to complicated loading (Suprapto and Wibawa, 2021). The Von Mises stress determines whether a material will be safe or fail (Karmankar, 2017). If the stress value exceeds the material strength, von Mises can fail (Vutton D. V., 2003). Figure 3 displays the outcomes of the simulation analysis of the power weeder machine frame model created using the software SolidWorks 2022.

Figure 3. Von Mises stress simulation results for power weeder machine

Figure 3 demonstrates how the stress is spread equally throughout the frame, tiller cultivator, and engine support. The weeding portion has the lowest value of von Mises stress at 189 N/m², while the connection section between the tiller cultivator and the connecting pipe to the frame and engine has the highest value at 2.51 x 10⁷ N/m². The amount of force applied to an object will immediately affect the amount of stress (Pranoto and Ma-hardika, 2018). When the von Mises stress reaches a certain level, known as the yield strength, a material is said to begin yielding.

3.2. Deformation

Deformation is a physical alteration to an object brought on by a load or force. Elastic deformation and plastic deformation are the two categories into which deformation is further separated (Juvinall, 2011). When an object undergoes elastic deformation, which is a physical change brought on by a force or load, it will revert to its original shape (Juvinall, 1967). Naturally, elastic deformation is used while developing tools since the maximum stress is constrained below the yield strength (K. Z. V. Dobrovolsky, 1973).

Figure 4. Power weeder machine frame deformation simulation results

Figure 4 displays the results of the material’s deformation value against the load. The weeding section has the smallest deformation value at 1 x 10⁻³⁰ mm, while the frame holder has the largest deformation value at 0.556 mm. This demonstrates that material is stronger the less it deforms (Hertzberg et al, 2012). The simulation findings demonstrate that even under high loads, the component does not experience significant deformation. The
component is damaged if it cannot resist the applied load.

3.3. Safety Factor

When performing stress testing on a model of an object, one of the parameters used as a reference is the safety factor (Wang et al. 2019). To prevent a failure and establish operability of the tool design, considering safety factor is necessary. The review procedure uses the safety factor, which ensures the proposed design is secure and serves as a gauge for an element’s strength (Wibawa et al., 2020).

Figure 5 displays the results of the modelling simulation. The frame design that has been created is extremely suited to withstand a load of 160 N since the result of the safety factor value in the simulation of the loading of the power weeder machine frame surpasses the necessary numerical value. A good model’s safety factor has a value closer to 1. (Elishakoff, 2004; Pratama and Mahardika, 2018). While the safety factor for a material that can bear dynamic loads is between two and three (K. Z. V. Dobrovolsky, 1973).

4. CONCLUSION

The finite element study of power weeder machine frame made of AISI 316L was successfully conducted using SolidWorks 2022 software. The power weeder machine frame simulation yielded a maximum von mises stress of 2.51×10^7 N/m². In the simulation of the power weeder machine frame, the maximum deformation result is 0.556 mm. The power weeder machine frame’s minimal safety factor simulation yielded a 6.8 with an AISI 316L material type result. Using AISI 316L steel, the suggested power weeder machine frame design can be deemed safe to bear loads up to 140N.

REFERENCES

SolidWorks. Journal of Technical Engineering, 3(1), 5-16. doi:https://doi.org/http://dx.doi.org/10.32493/pjte.v3i1.7486

Juvinall, R. C. (1967). Engineering Considerations of Stress, Strain, and Strength (1st ed.).
Prasetio & Sekarjati, *Finite Element Simulation of Power Weeder Machine Frame* | 32

Walled Cylinder for Rocket Motor Case under Internal Pressure. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 106–115. doi:https://doi.org/10.37934/ARFMTS.70.2.106115