
43 | Indonesian Journal of Computing, Engineering, and Design, Volume 5 Issue 1, April 2023 Page 43-56

 IJoCED, 2023, 5 (1); doi.org/10.35608/ijoced.v5i1.325

JSON Web Token Leakage Avoidance using Token

Split and Concatenate in RSA256

Malvin1, Cutifa Safitri 1*

1 Faculty of Computing, President University, Bekasi, West Java 17530, Indonesia

Corresponding email: cutifa@president.ac.id

A B S T R A C T A R T I C L E I N F O

This research aims to protect users from JWT (JSON Web Token)
leakage, which is listed plainly in the Response Header in the web
browser console. The risk of malicious attackers stealing the JWT
is highly dangerous since the API (Application Programming Inter-
face) will be within the control of malicious attackers, leading to
identity theft and data abuse due to the JWT leakage. As a solution,
this paper proposed a method in which the JWT bearer token will
be split, separately encrypted by RSA256, and concatenated into a
new unique token to limit attacker accessibility towards the JWT
token. The benefit of this proposed method is envisaged to
achieve a more secure web application for user data protection
and security optimization. The idea of this method is to modify the
bearer token by splitting, encrypting, and concatenating it to be a
unique token. The product of the encryption process is an unrec-
ognizable token in the form of letters and punctuation which at-
tackers cannot manipulate. The encrypted code will be returned
to the initial location in Response Header. After testing, it is proven
that modifying the bearer token by splitting and concatenating
provides more security to a web application.

 Article History:
Received 26 Oct 2022
Revised 22 Feb 2023
Accepted 02 Mar 2023
Available online 03 Apr 2023

Keywords:
Application programming inter-
face,
Authentication,
JSON web token,
RSA256.

1. INTRODUCTION

In this Web 3.0 era, web applications
have been used in every part of our lives,
from e-banking, e-commerce, e-learning,
and even ordering food or massage ser-
vice. Web application is an inseparable
part of everyday life. Besides, web applica-
tions undoubtedly, increase the efficiency
and effectiveness of people of all ages.
Amid all that progress, security threats

have been a concerning issue. Security ex-
perts and malicious actors are engaged in
a never-ending data war. Data breaches
appear to be occurring more frequently
overall, costing more money. In the US, ap-
proximately US$ 8.64 million was lost due
to data breaches in 2020. Surprisingly, 96%
of web applications have well-known flaws
and oddities (Adam, Moedjahedy & Mara-
mis, 2020). Businesses should consider se-
curity during application development to

Indonesian Journal of Computing, Engineering, and Design (IJoCED) 5 (1) (2023) 43-56

Indonesian Journal of Computing, Engineering, and Design

Journal homepage: http://ojs.sampoernauniversity.ac.id/index.php/IJOCED

https://doi.org/10.35806/ijoced.v5i1.325
cutifa@president.ac.id%20
http://ojs.sampoernauniversity.ac.id/index.php/IJOCED

Malvin & Safitri, JSON Web Token Leakage Avoidance Using Token Split and …| 44

offer adequate protection against web ap-
plication security threats.

One of the threats that users must pay
attention to is stealing JWT. A web applica-
tion that utilizes JWT as the security stand-
ard must be cautious. JWT, an open stand-
ard that enables the exchange of security-
related data between a client and a server,
is susceptible to theft. JWT is laid explicitly
in the Response Header. A malicious user
can steal the JWT and access the API with-
out authentication. This condition is fatal
since the malicious user can Create, Read,
Update, Delete, and data of the API, which
is identity theft and privacy violation. Im-
agine if this condition happens in an e-
banking web application. The malicious
user will access the customer’s personal in-
formation and the money inside the bank
account. This study aims to prevent the
above incident from happening.

State of the art in this study to prevent
data leaks towards user credentials is
through a proposed technique that allows
the JWT to be hashed in a manner so that
malicious attackers who intend to steal the
JWT cannot use it to access the API. The
proposed method suggests using the
RSA256 hashing algorithm. RSA is a fre-
quently used asymmetric cryptosystem.
The difficulty of the factorization issue de-
termines the strength. The factors for RSA
were 64, 96, 128, 160, 192, 224, and 256
bits. This study intends to employ RSA256,
which is more secure, and if the keys are
compromised, the user may immediately
rotate them. A token's signer enables the
token's recipient to confirm that the to-
ken's content hasn't been altered and en-
sure that the signer is the token's original
creator. Although JWTs are signed, their
data is still viewable. Only the non-change
of the JWT's content can be verified using
signatures. The JWT's signature proves
that its contents have not changed since
the JWT was first issued (as it would, for

instance, if there were direct attacks). Sig-
natures are generated by mixing encoded
versions of a JWT's header and payload
and passing them, together with the se-
cret, as arguments into the header-defined
method. Further explanations of this
method will be described in the following
chapters.

Several works of literature are ana-
lyzed and discussed to get the idea of au-
thentication in a web application, hashing
algorithm, and how it is applied to the web.
Below is the explanation that is divided
into several sub-part.

1.1. Authentication

Idrus et al. defined authentication as
proof the claimant gives information to as-
sert and monitor that they correspond to
the provided identity (Idrus and
Zulkarnain, 2013). Three entities are in-
volved in the authentication process: the
claimant, the provider, and the Infor-
mation System. Idrus et al. believe that
there are five factors to authenticate hu-
mans: something the user knows; some-
thing the user owns; something that quali-
fies the user; something the user can do,
and where the user is.

There are various authentication
methods, such as passwords, OTPs, radio
frequency identification, biometrics, etc.
Other than password and biometrics, To-
ken Presence can also be utilized to supple-
ment the authentication requirements. To-
ken Presence can be a physical token (such
as a card, etc.) and a one-time software-
generated password. Several State-of-the-
art and potential MFA (Multi-factor au-
thentication) sources are developed to
support the utilization of this technology in
securing data and devices such as behavior
detection, Beam-Forming Techniques,
Electrocardiographic Recognition, Electro-
encephalographic Recognition, and DNA
Recognition (Ometov et al., 2018).

45 | Indonesian Journal of Computing, Engineering, and Design, Volume 5 Issue 1, April 2023 Page 43-56

Multiple methods can be used to
achieve higher security. There are several
criteria for the methods: the observed
popularity, the device cost, or the cost of
per-user equipment, the infrastructure
cost, or the cost of the setting up of such
an authentication method, the ease of use,
and the general security (van der Horst &
Seamons, 2007). Based on these criteria,
biometrics is one of the finest ways to au-
thenticate since the security is very safe
and effective. However, the cost of setting
up biometric authentication is high. In con-
clusion, all authentication method has its
advantage and disadvantage. The selection
of suitable security technique need to con-
sider the sensitivity level of user infor-
mation

1.2. Web Based Authentication

There are multiple ways to perform
web-based authentication. For this re-
search, this study has reviewed several
web-based authentications such as FSUA
(Frictionless and Secure User Authentica-
tion), SSH (Secure Shell), SSO (Single Sign
On), Beam Auth, and JWT (JSON Web To-
ken). Password-based authentication is in-
sufficient since the same password is re-
used on many sites. Malicious web users
can breach the password by brute force
(repeatedly guessing the password) and
credential-stuffing (trying a known creden-
tial from one website to another). On the
other hand, MFA is inconvenient since it
takes many steps to authenticate. Timothy
Baron et al. propose using web tripwires
and login rituals, which are complemen-
tary. To remain trusted by the app, one
party explains what steps the user should
take, while the other explains what they
should not.

Web tripwires are deceptive intrusion
detection mechanisms specific to every
user, allowing them to customize their in-
trusion detection traps. On the other hand,
login rituals are user actions that must be

taken immediately after an initial authenti-
cation (Barron et al., 2021).

FSUA works when the user submits the
username, password, OTP, and certificate.
When the user is verified, FSUA will match
the data with the profiler and historical
data through the selected mechanism until
it is successfully login. There are no over-
head costs because the suggested system
was created using the frictionless method-
ology (Olanrewaju et al., 2021).

SSH is a JWT profile for least-privilege
OAuth tokens for distributed scientific
computing and open-source implementa-
tion. SSH uses digitally signed, self-describ-
ing JWTs instead of opaque tokens to allow
SSH-enabled services to locally verify to-
kens from many issuers to support large-
scale distributed scientific computing envi-
ronments (Park, 2019). The authorization
server issues a token to a user to begin the
verification process. After getting a token
from the authorization server, the user can
cut and paste the token into any SSH client
application to respond to the host's ques-
tion. However, there is a possibility of leak-
age of a token. As a countermeasure, the
SciTokens SSH implementation is very cau-
tious about what data is reported, only log-
ging enough information to allow adminis-
trators and users to troubleshoot connec-
tion issues (Gao et al., 2020)

On the other hand, there is SSO, a
desktop application that provides security
to computers hosting COSMOS. COSMOS
utilizes JWT as one of its ways to authenti-
cate users. Users log in using Keycloak, and
a JWT token is returned. The frontend ap-
plication can use this token to authenticate
API calls. Since the access token is signed,
it can be cryptographically verified that it
was generated by the Keycloak system and
is unchanged. By using JWT, any infor-
mation about the user can be stored in
Keycloak outside of the application.

Malvin & Safitri, JSON Web Token Leakage Avoidance Using Token Split and …| 46

Additionally, the JWT access token is
irrevocable, signifying that the token is
valid until the current time reaches the to-
ken's expiration time, and it can success-
fully conduct API actions within the sys-
tem. The benefit of using JWT here is that
it provides added security to less common
but more critical commanding/scripting
actions (Melton, 2021; Soh & Joy, 2003).

This research has also discussed
BeamAuth, a two-factor web authentica-
tion method in which a specifically created
bookmark serves as the second factor.
BeamAuth offers two intriguing features:
any contemporary, out-of-the-box web
browser can be used on the client side with
simple server-side deployment, and even if
the user neglects to check the necessary
user interface indicators, credentials are
still safe from many different sorts of
phishing attacks. Any login-protected web
server may deploy BeamAuth immediately
with minimal effort, and it does not hinder
or conflict with existing anti-phishing
measures. BeamAuth is intended and im-
plemented as a two-factor authentication
method to counter various phishing at-
tempts using only existing features of HTTP
and contemporary web browsers.
BeamAuth is thought to increase the diffi-
culty of the most prevalent phishing at-
tacks significantly. The method is best for
high-value websites, especially single sign-
on websites, since the user will likely make
an extra minor effort during registration
because it takes bookmark-bar real estate
and a browser setup procedure. BeamAuth
takes advantage of the URL Fragment Iden-
tifier's peculiar characteristics, including
the fact that it is never communicated over
the network and that altering it does not
cause a page to reload (Adida, 2007; Ah-
med & Lee, 2017).

Finally, JSON Web Token (JWT) is an
open standard that enables the communi-
cation of security-related information

between a client and a server. Each JWT
contains a collection of encoded JSON ob-
jects, such as claims (Adam, Moedjahedy &
Maramis, 2020). JWTs are signed with a
cryptographic method to guarantee that
the claims cannot be altered after issuing
the token (Akana, 2022). JWT secures data
that is a JSON object by digitally signing it
using algorithms like HMAC (Hash-based
Message Authentication Code) and encod-
ing it as a string (Sakimura, Bradley &
Jones, 2022). JWT consists of three main
parts: the Header, Payload, and Signature.
The Header stores the type of token and
signing algorithm used on a token. The
component known as the Payload is where
the actual data for a given transaction is
kept. The final part, called the Signature,
consists of the encoded portions of the
Header and Payload and a "secret" that can
be any string (Pramono & Javista, 2021).

(1) The user will log in using their
username and password. Then (2), the au-
thentication service will validate the
username and password and generate the
user ID. (3) Subsequently, the authentica-
tion service will generate the JSON Web to-
ken by executing the JWT function called
"sign," using the user ID and the private
key that has been stored by default on the
system as parameters. (4) The generated
token will be sent to the user through the
client side by attaching it to the Response
Header. (5) The client will store the trans-
ported token in the local storage. On every
user request, (6) the token will be sent to
the server side to be verified by attaching
it to the Request Header. Afterwards, (7)
the server side will execute another JWT
function called "verify" to verify and gener-
ate the original value, which is the user ID,
using the token and public key that has
been stored by default on the system as
parameters. When validated (8), the user
can access the selected operation. A more
thorough explanation can be seen in Figure
1.

47 | Indonesian Journal of Computing, Engineering, and Design, Volume 5 Issue 1, April 2023 Page 43-56

Figure 1. JSON Web Token Workflow

1.3. Hash-Based Authentication

The way hashing works in authentica-
tion is that when users create a new ac-
count and enter their password, the appli-
cation code hashes the password and
stores the result in the database. The hash-
ing algorithms that have been analyzed are
SHA, RSA, and AES. SHA-1 is a scheme pro-
posed by Peyavian and Zunic which pro-
tects password transmission over insecure
networks. The weakness of this scheme is
that the user can randomly use an ID and
password, which makes the scheme vul-
nerable to guessing attacks. Users can
change their password over an insecure
network, and unauthorized users can inter-
cept messages and determine a potential
password. Most user passwords are mean-
ingful (found in dictionaries) or short
strings (i.e., 8 bytes) for simple memory,
making the guessing attack computation-
ally feasible. The servers now calculate the
authentication formula and compare the
user's password to the verification table
during the phase where the password is
changed. If the value is the same, the
server requests the user to modify the

password and substitutes the new pass-
word for the old one in the verification ta-
ble. In this approach, it is challenging to
guess the user's password (Lee et al.,
2002).

RSA is a widely used asymmetric cryp-
tosystem whose strength is determined by
the factorization issue. The factors for RSA
are 64, 96, 128, 160, 192, 224, and 256 bits,
and for this study, RSA256 will be used be-
cause it is more secure, and if the keys are
compromised, the user can rotate them
immediately. JSON Web Tokens are signed
when they are created, and the token's
signer allows the token's recipient to con-
firm that the token's content has not been
altered and that the signer is the token's
original creator. Although JWTs are signed,
their data is still viewable. Only the non-
change of the JWT's content can be veri-
fied using signatures. The JWT's signature
proves that its contents have not changed
since the JWT was first issued, as it would,
for example, in the case of direct attacks.
Signatures are generated by mixing en-
coded versions of a JWT's header and pay-
load and passing them, together with the

Malvin & Safitri, JSON Web Token Leakage Avoidance Using Token Split and …| 48

secret, as arguments into the header-de-
fined method. (Zhang & Zhu, 2006; Mac-
Kenzie et al., 2000).

Secure hash functions, such as AES-
hash, accept arbitrary bit strings as input
and output strings of a defined length (in
this case, 256 bits) (Dhamija, 2000). While
AES-hash may parallelize to a certain ex-
tent, allowing key setups and encryptions
to happen simultaneously, file hashing
must be done serially, although it only
needs to be done once. Secure hash modes
don't require keying material, but keyed
variations are easily attainable (Kogan et
al., 2017). AES-hash only needs to keep one
block of the hashed file in memory at a
time and requires only a minimum fixed
amount of memory to store its Hi values.
AES-hash can operate on any bitstring to
be helpful in as many different applications
as possible. As a form of the compression
process, all secure hash methods reduce
everything to a small, fixed size; in this
case, 256 bits (Sasaki, 2011) (Syamsuddin
et al., 2008).

1.4. Web-based Authentication Using
Hash

Merkle Hash Tree can verify query re-
sults from an untrusted database server by
providing trusted information. The process
involves building a Merkle tree structure
for a specific site using hashes for re-
sources and their canonical web paths. A
normalized version of the resource URL,
known as a canonical web path, eliminates
the hostname and scheme parts and de-
codes escape sequences, among other
things (Mainanwal, Gupta & Upadhayay,
2015). Merkle Tree proves to be feasible
and practical in authenticating untrusted
web-serving infrastructures. However,
there is no detailed report on the Merkle
Tree implementation. More implementa-
tion pseudo-code for the verification pro-
cesses is required, as well as research into
Merkle tree upkeep, tests, and experiences

with actual implementations (Bayardo &
Sorensen, 2005).

On the other hand, a technique known
as the single block hash function is used to
confirm a web user's identification. A sin-
gle-block hash function can withstand typ-
ical attacks such as replay attacks, eaves-
dropping, and message alteration. The sin-
gle-block hash algorithm calls the random
number to the background server point
when the user enters their ID and pass-
word (Mallik et al., 2019). When the au-
thentication procedure detects the same
equivalent value after the server changes
the password, the server will assume that
the user is legitimate and grant access to
its request. The implementation showed
that the single-block hash function is more
effective than the widely used MD5 tech-
nique (Wang et al., 2013) (Chatterjee &
Prinz, 2022).

1.5. Web Application

A web application is computer soft-
ware that utilizes web technology and web
browsers to operate over the Internet.
Web applications use a combination of cli-
ent-side scripts (JavaScript and HTML) and
server-side scripts to manage information
storage and retrieval (PHP and ASP). Typi-
cally, web applications are written in a lan-
guage that is supported by a web browser,
such as HTML or JavaScript, as these lan-
guages rely on the browser to make the
program executable. The web application
requires a web server to receive client re-
quests, an application server to complete
the tasks, and occasionally a database to
store the data. Application servers employ
the following technologies: ASP.NET, ASP,
ColdFusion, PHP, and JSP.

The advantages of a web application
are that it works on various devices and op-
erating systems if the browser is compati-
ble. There are no compatibility difficulties
because everyone accesses the same ver-
sion. Additionally, there are no space

49 | Indonesian Journal of Computing, Engineering, and Design, Volume 5 Issue 1, April 2023 Page 43-56

restrictions because they are not stored on
the hard disk. In subscription-based web
applications, software piracy is less of a
concern (i.e., SaaS). Due to fewer corpo-
rate support and maintenance needs, and
fewer demands on the end user's PC, web
applications reduce expenses for both the
customer and the business (Stackpath,
2022).

The increasing internet use by busi-
nesses and individuals has altered how en-
terprises are run. As enterprises migrate
from traditional models to cloud-based
and grid models, web apps are now com-
monly used. Web apps help businesses
streamline operations, increase productiv-
ity, and save costs.

1.6. REST and SOAP API Differentiation

The most commonly used access pro-
tocols for web services are SOAP (Simple
Object Access Protocol) and REST (Repre-
sentational State Transfer) APIs. SOAP is a
standard communication protocol system
that enables processes running on differ-
ent operating systems, such as Linux and
Windows, to communicate over HTTP and
XML. Using SOAP-based APIs, records such
as accounts, passwords, leads, and custom
objects can be created, retrieved, updated,
and deleted. SOAP APIs enable developers
to easily control online services and re-
ceive responses without worrying about
languages or platforms since all operating
systems are handle HTTP and related XML.

REST is a web service architectural de-
sign that acts as a communication channel
between various internet-connected de-
vices or systems. Application programming
interfaces supported by the REST architec-
tural framework are referred to as REST
APIs. REST API-compliant online services,
database systems, and computer systems
enable requesting systems to acquire ro-
bust access and redefine representations
of web-based resources by offering a

predetermined set of stateless protocols
and standard procedures.

The differences between SOAP and
REST are that since REST API is an architec-
tural approach, there is no official standard
for it. Conversely, because SOAP API is a
protocol, it has a recognized standard. Sec-
ond, compared to SOAP, which uses XML
to create the Payload and produces a large-
sized file, REST API deploys various stand-
ards. Therefore, it requires less bandwidth
and resources. Finally, JavaScript makes
REST APIs more practical and their imple-
mentation more straightforward. Although
SOAP APIs work well with JavaScript, they
do not support extensive implementation
(Malik, 2017).

2. RESEARCH METHODOLOGY

This section is divided into two parts.
Firstly, a detailed discussion of the tools
used for this study is provided. Secondly,
the proposed JSON web token leakage
avoidance method using token split and
concatenate in RSA256 will be explained.

2.1. Tools

JetBrains IntelliJ was utilized as the in-
tegrated development environment (IDE)
for creating applications using various lan-
guages such as Java, Kotlin, and other JAR-
based languages (Syamsuddin et al., 2008).
The programming language employed in
this study is Java, and the framework used
for illustration is SpringBoot, an open-
source, microservice-based Java web
framework. As mentioned earlier, JWT will
be employed for security authentication. A
JWT consists of a set of encoded JSON ob-
jects, including claims. These objects are
digitally signed using algorithms like HMAC
(Hash-based Message Authentication
Code) and encoded as a string to ensure
that the claims cannot be altered after the
token is issued (Venkatesha et al., 2019).

Malvin & Safitri, JSON Web Token Leakage Avoidance Using Token Split and …| 50

JWT provides security for data in the form
of a JSON object.

Additionally, Postman was used to ex-
ecuting the API. Postman is a platform for
creating and utilizing APIs (Ghaly & Abdul-
lah, 2021). It uses a graphical user interface
to test HTTP requests and provide the user
with a range of responses that must be ver-
ified. Postman supports numerous end-
point interaction methods, including GET
(to obtain information), POST (to add infor-
mation), PUT (to replace information),
PATCH (to update certain information),
and DELETE (to delete data). A summary of
these methods is provided in Table 1.

2.2. Proposed Method

In a web application, a vulnerable
point that is particularly susceptible to at-
tack is the JSON Web Token (JWT) bearer
token. This token is written in the Re-
sponse Header in an "Inspect" form, leav-
ing it open to potential theft by malicious
attackers. Suppose an attacker were to
succeed in stealing the bearer token using
any of the methods mentioned earlier,
they could potentially access the web ap-
plication through POSTMAN. This would be
a significant security breach, as the at-
tacker would be able to access the web ap-
plication without needing to authenticate
with a username and password. The at-
tacker could perform various functions us-
ing POSTMAN, including Get, Post, Put,

Patch, and Delete. In other words, an at-
tacker in possession of the JWT could ac-
cess the entire web application and oper-
ate it as if they were the owner of the ap-
plication, allowing them to access all per-
sonal information stored within the appli-
cation and creating a potentially danger-
ous situation.

The present study has implemented
the eight JSON Web Token (JWT) architec-
ture steps. The process commences with
the user's authentication, where (1) the
user logs in to the client application by
providing their username and password.
Subsequently, (2) the client transmits the
relevant information to the server for pro-
cessing. Upon receiving the data, (3) the
JWT security method is invoked to gener-
ate the bearer token using a private key
and the provided information.

The study proposes an additional step
to the existing JWT architecture, specifi-
cally splitting the token into two parts,
which are subsequently encrypted using
RSA256 with a 1024-bit key size after the
generation of the JWT security token (4).
Once the token is processed, it will be
placed in the response header and sent to
the client. The token will be returned to
the client (5) and placed in the response
header (6). Subsequently, the token will be
used to access the secured API on every re-
quest to the server, with the JWT token be-
ing transmitted on each request (7 and 8).

Table 1. The Tools that are Utilized in this Research

ITEM NEEDED

JetBrains IntelliJ Create computer applications using various programming languages.

Java
Write programs that direct a computer to perform specific calculations or co-

ordinate the transfer of control between external devices.

SpringBoot Develop applications based on the program.

JWT Ensure secure online information transfer between two parties.

Postman Build a platform for creating and utilizing APIs.

51 | Indonesian Journal of Computing, Engineering, and Design, Volume 5 Issue 1, April 2023 Page 43-56

Figure 2. Existing JWT Architecture and The Proposed Method.

Figure 2 portrays the comprehensive
proposed method. As the JWT security ad-
mits the generated bearer token without
discerning the corresponding user utilizing
it for calling the API, masking the gener-
ated bearer token becomes imperative.
This action entails splitting the token, en-
crypting each token with RSA, and concat-
enating them to form a new, unique token
(Romero, 2021). Implementing this action
enhances the security of the original token,
rendering it less susceptible to unauthor-
ized access. Since the token encompasses
confidential data, including the user's JWT
private key, username, and password, un-
authorized users might attempt to extract
sensitive information from it, thereby ren-
dering it vulnerable. This vulnerability is
particularly pronounced in step (3) of the
JWT architecture. Figure 2 depicts the ex-
isting JWT architecture and the proposed
method implemented in step (4).

Table 2 illustrates the JWT bearer to-
ken before and after encryption, with sev-
eral steps taken to implement the pro-
posed method. The process commences
with the generation of the token, which is
then split into two parts. Each segment is

encrypted with KeyPairGenerator via RSA,
utilizing a 1024-bit key size (Dhamija,
2000). The splitting of the token serves to
generate a new token that cannot be de-
crypted to its original state, even if the en-
crypted token is compromised. Encrypting
the two parts of the bearer token makes it
more difficult for unauthorized users to de-
crypt it to its original state (Sasaki, 2011).
Once the encryption process is complete,
the processed tokens are concatenated
into a new, unique token and returned to
the client by being placed on the response
header.

The token-splitting process is initiated
by creating two variables based on the to-
ken length. The token is then sub stringed
from zero to the token length divided by
two. The first split token is reserved in a
variable designated for this purpose. Sub-
sequently, the token is sub stringed in the
range of token length divided by two to the
token length, with the resulting second
split token being saved in a separate varia-
ble (MacKenzie et al., 2000). Table 3 pro-
vides a detailed representation of the first
and second split token forms, which have
already been encrypted.

Table 2. Existing and Proposed Method Bearer Token

Existing Bearer Token Proposed Method Bearer Token

eyJhbGci…NbZ25rXg (token length is 206) CSwUp…GQugAn2M= (token length is 344)

Malvin & Safitri, JSON Web Token Leakage Avoidance Using Token Split and …| 52

Table 3. The encrypted first and second split token

First Token Second Token

CSwUpT0...Z6yiQAz8= (token length is 172) E0FR0qq...QugAn2M= (token length is 172)

After splitting the tokens, both un-
dergo the same encoding process using
Base64. The resulting tokens are then con-
catenated to generate a unified token,
which is returned to the response header
(MacKenzie et al., 2000). Further details
about this process can be found in Table 4.

3. RESULTS AND DISCUSSION

This chapter will present an analysis of
the proposed method's outcomes and elu-
cidate the application's performance tai-
lored specifically for this research.

The constructed REST API systems and
testing algorithms were evaluated using
selected testing parameters, including re-
sponse time (the duration required for the
server to respond to a client's request),
number of bits (the key size that deter-
mines the maximum number of combina-
tions needed to break an encryption algo-
rithm), supported browsers (the number of
browsers that can support the algorithm),
and authentication time (the duration re-
quired for authentication). A higher num-
ber of supported browsers indicates better

results, suggesting that the algorithm pos-
sesses greater flexibility.

3.1. Response Time

The response time is evaluated to en-
hance the performance of the implemen-
tation stage on the server side. During the
JWT production process, the username
and password parameters are utilized.
However, since the maximum bytes of RSA
is 126 while the number of bytes of the
bearer token exceeds 126, the JWT is en-
crypted using RSA to mask its content. The
JWT is divided into two parts, each hidden
with RSA to ensure its confidentiality.

A comparison was made to test the
proposed method with the existing JWT
method without encryption. This compari-
son aimed to determine the proposed
method's effectiveness compared to the
current method. The testing was con-
ducted 30 times, and the results are pre-
sented in Table 5. The proposed method
performed slightly worse regarding re-
sponse time, which is logical since greater
security typically requires more time.

Table 4. The Proposed Method Algorithm

1
2
3
4
5
6
7
8
9
10
11
12

Input:
 User credential into JWT
Process:
 JWT generates token
 Create two string variables named x and y
 Get token length for separating the token
 Substring token range 0 to token length/2 and set the input to variable x
 Substring token range token length/2 to token length set the input to variable y
 Variable x and y are encrypted by RSA and encoded it using Base64
 Combine variables x and y using the java asset function, which is “concat”.
Output:
 Two variables contain half a token of each encrypted token, x, and y, which have
been concatenated

53 | Indonesian Journal of Computing, Engineering, and Design, Volume 5 Issue 1, April 2023 Page 43-56

Table 5. Response and Authentication Time Comparison

No Response Time (milliseconds) Authentication Time (milliseconds)

Existing Method Proposed Method Existing Method Proposed Method
1 151.78 227.08 168 255

2 161.79 244.6 141 206

3 141.04 254.59 146 202

4 164.72 248.65 159 200

5 155.7 221.13 145 246

6 147.81 205.44 148 226

7 159.53 253.59 141 216

8 157.88 240.52 168 195

9 139.41 229.64 137 225

10 143.74 219.53 159 236

11 159.73 222.98 144 209

12 158.59 207.57 154 245

13 143.53 213.01 166 224

14 144.98 242.1 148 211

15 166.03 208.36 161 240

16 137.58 207.07 131 226

17 168.13 245.66 139 231

18 157.18 196.89 149 195

19 139.91 226.2 155 238

20 167.82 205.28 136 231

21 150.96 232.38 151 240

22 155.91 253.06 158 246

23 168.43 237.64 169 203

24 142.14 224.6 166 254

25 155.12 226.34 134 200

26 135.02 223.86 157 243

27 141.58 208.76 138 227

28 168.94 257.4 150 232

29 135.32 211.07 147 207

30 145.37 211.17 134 214

Avg 152.18 226.87 149.96 224.10

3.2. Number of Bits

The bit count is implemented to en-
sure the algorithm possesses the required
key size to enable the maximum number of
combinations, rendering the encryption al-
gorithm challenging to break. The RSA en-
cryption algorithm has several key sizes,
each corresponding to the number of bits
in the algorithm. The maximum number of
combinations to compromise an encryp-
tion technique relies on the key length.
This study employs a key size of 1024 bits
in the RSA algorithm. The strength of this
key is moderate; therefore, to increase its
potency, the bearer token is bifurcated in
this research. This measure enhances the
security and safety of the algorithm.

3.3. Authenticate Time

Authentication timing is performed to
evaluate the efficiency of the authentica-
tion process. This testing measures the du-
ration and process required for RSA to en-
crypt the generated bearer token from the
JWT authentication. Table 5 compares the
authentication time between the en-
crypted and non-encrypted methods. The
average authentication time of the en-
crypted method is 224.1 milliseconds,
while the average authentication time of
the non-encrypted method is 149.96 milli-
seconds.

The authentication time test results
are consistent with the response time

Malvin & Safitri, JSON Web Token Leakage Avoidance Using Token Split and …| 54

testing. Notably, the encrypted method re-
quires slightly more time to authenticate
than the existing non-encrypted method.

4. CONCLUSION

Following a series of tests, it can be
concluded that the RSA256-encrypted
JWT-based web application exhibits
slightly worse average performance re-
garding response time and authentication
time. However, safety-wise, the encrypted
method is more secure than the non-en-
crypted one since it has more bits than the
existing algorithm method. Implementing
the proposed method by bifurcating the
bearer token into two, encrypting each of
the tokens, and concatenating them into
one is successful.

The minimum response time of the en-
crypted method is 205.28 milliseconds,
while that of the non-encrypted method is
135.02 milliseconds. The maximum re-
sponse time for the encrypted method is
257.4 milliseconds, and for the non-en-
crypted method, it is 168.94 milliseconds.
Notably, the average response time is
226.87 milliseconds, which is longer than
that of the non-encrypted method, which
only takes 152.189 milliseconds. However,
since security is more important than a
slightly longer response time, the pro-
posed method's higher number of bits rep-
resents a significant security improvement.

Regarding browser compatibility, all
the methods can be deployed in every
browser. Concerning authentication time,
the minimum authentication time for the
encrypted method is 195 milliseconds,
while that of the non-encrypted method is
131 milliseconds. The maximum authenti-
cation time for the encrypted method is
255 milliseconds, while that of the non-en-
crypted method is 169 milliseconds. The
proposed method's average authentica-
tion time is 224.1 milliseconds. Although
the encrypted method takes longer, the
goal of achieving more security is accom-
plished.

The encrypted method's number of
bits is the highest, which indicates that it is
more secure than the non-encrypted
method. The drawback is that the en-
crypted method's response and authenti-
cation times may be longer. However, with
a higher level of security, users can tolerate
the additional milliseconds the method
takes.

In summary, implementing the RSA-
encrypted method to JWT increases the se-
curity of JWT-based applications. Attackers
will find it difficult to access the web appli-
cation because they cannot decrypt the to-
ken to its original state. For future work,
smaller key sizes could be implemented to
reduce the execution time's consumption.

REFERENCES

Adam, S., Moedjahedy , J., & Maramis, J. (2020). RESTful Web Service Implementation on Un-
klab Information System Using JSON Web Token (JWT). 2020 2nd International Confer-
ence on Cybernetics and Intelligent System (ICORIS).

Adida, B. (2007). BeamAuth: Two-Factor Web Authentication with a Bookmark. Conference
on Computer and Communications Security, Alexandria.

Ahmed, A., & Lee, M. (2017). Securing User Credentials in Web Browser: Review and Sugges-
tion. 2017 IEEE Conference on Big Data and Analytics (ICBDA).

Akana. (2022, July 4). What is JWT. Retrieved from https://www.akana.com/blog/what-is-jwt

55 | Indonesian Journal of Computing, Engineering, and Design, Volume 5 Issue 1, April 2023 Page 43-56

Barron, T., So, J., & Nikiforakis, N. (2021). Click This, Not That: Extending Web Authentication
with Deception. 2021 ACM Asia Conference on Computer and Communications Security.
Hong Kong.

Bayardo, R., & Sorensen, J. (2005). Merkle tree authentication of HTTP responses. 14th inter-
national conference on World Wide Web.

Boneh, D., & Franklin, M. (2001). Efficient Generation of Shared RSA Keys. Journal of the ACM,,
vol. 48, no. 4, 702-722

Chatterjee, A., & Prinz, A. (2022). Applying Spring Security Framework with KeyCloak-Based
OAuth2 to Protect Microservice Architecture APIs: A Case Study. Sensors, vol. 22, no.
1703.

Dhamija, R. (2000). Hash Visualization in User Authentication. CHI 2000, The Hague.

Gao, Y., Basney, J., & Withers, A. (2020). SciTokens SSH: Token-based Authentication for
Remote Login to Scientific Computing Environments.
https://doi.org/10.1145/3311790.3399613

Ghaly, S., & Abdullah, M. (2021). Design and Implementation of a Secured SDN System Based
on Hybrid Encrypted Algorithms. TELKOMNIKA (Telecommunication Computing Elec-
tronics and Control),.

Idrus, S., & Zulkarnain, S. (2013). A Review on Authentication Methods. Australian Journal of
Basic and Applied Sciences, vol. 7, no. 5, 95-107.

Kogan, D., Manohar, N., & Boneh, D. (2017). T/Key: Second-Factor Authentication From Se-

cure Hash Chains. CCS 2017. Dallas.

Lee, C., Li , L., & Hwang, M. (2002). A Remote User Authentication Scheme Using Hash Func-
tions. ACM SIGOPS Operating Systems Review, (pp. 23-29).

MacKenzie, P., Patel, S., & Swaminathan, R. (2000). "Password-Authenticated Key Exchange
Based on RSA,". Springer, 599–613.

Mainanwal, V., Gupta, M., & Upadhayay, S. (2015). Zero knowledge protocol with RSA Cryp-
tography Algorithm forAuthentication in Web Browser Login System (Z-RSA). 2015 Fifth
International Conference on Communication Systems and Network Technologies. Gwa-
lior.

Mallik, A., Ahsan, A., Shahadat, M., & Tsou, J. (2019). Understanding Man-in-the-middle-at-
tack through Survey of Literature. Indonesian Journal of Computing, Engineering and
Design (IJoCED), 44-56.

Melton, R. (2021). Securing a Cloud-Native C2 Architecture Using SSO and JWT. 2021 IEEE
Aerospace Conference (50100). New South Wales.

Olanrewaju, R., Khan, B., & Morshidi, M. (2021). A Frictionless and Secure User Authentica-

tion in Web-Based Premium Applications. IEEE Access vol. 9.

Ometov, A., Bezzateev, S., Mäkitalo, N., Andreev, S., Mikkonen, T., & Koucheryavy, Y. (2018).

Multi-Factor Authentication: A Survey. Cryptography.

Malvin & Safitri, JSON Web Token Leakage Avoidance Using Token Split and …| 56

Park, J. (2019). Design and Implementation of Web Browser Secure Storagefor Web Standard
Authentication Based on FIDO,”. The Tenth International Symposium on Information
and Communication Technology (SoICT 2019). Hoan Kiem.

Pramono , L., & Javista, Y. (2021). Firebase Authentication Cloud Service for RESTful API Secu-
rity on Employee Presence System. International Seminar on Research of Information
Technology and Intelligent Systems (ISRITI). Yogyakarta.

Sakimura, N., Bradley, J., & Jones, M. (2022). Retrieved from JSON Web Token:
https://tools.ietf.org/html/rfc7519

Sasaki, Y. (2011). Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an Appli-
cation to Whirlpool. International Association for Cryptologic Research, (pp. 378–396).

Stackpath. (2022, September 20). WHAT IS A WEB APPLICATION? Retrieved from Stackpath:
https://www.stackpath.com/edge-academy/what-is-a-web-application/

Soh, B., & Joy, A. (2003). A Novel Web Security Evaluation Model for a One-Time-Password
System. IEEE/WIC International Conference on Web Intelligence (WI’03). Halifax.

Syamsuddin, I., Dillon, T., Chang, E., & Han, S. (2008). , "A Survey of RFID Authentication Pro-
tocols Based on Hash-Chain Method. International Conference on Convergence and Hy-
brid Information Technology.

van der Horst, T., & Seamons, K. (2007). "Simple Authentication for the Web,". WWW 2007.
Alberta, Canada.

Venkatesha, G., Dinesh, S., & Manjunath, M. (2019). "AES Based Algorithm for Image Encryp-
tion and Decryption. Perspectives in CommunicationEmbedded-Systems and Signal-Pro-
cessing (PiCES) – An International Journal, vol. 2, no. 11.

Wang, S., Wang, J., & Li, Y. (2013). The Web Security Password Authentication based the Sin-
gle Block Hash Function. International Conference on Electronic Engineering and Com-
puter Science. Yanji.

Zhang, H., & Zhu, Y. (2006). , "Self-Updating Hash Chains and Their Implementations," p. 2006.
Springer, 387 – 397.

