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A B S T R A C T  A R T I C L E   I N F O 
 

Pneumonia is one of the most common contagious respiratory dis-
eases, and one of its symptoms is shortness of breath. This symp-
tom underscores the need for non-contact monitoring methods, 
which our paper addresses by proposing a strategy that uses Fre-
quency-Modulated Continuous Wave (FMCW) radar to extract 
breathing waveforms and then classifies them with an eXtreme 
Gradient Boosting (XGBoost) model. The model performs well on 
our dataset, using stratified k-fold cross-validation and Mel-Fre-
quency Cepstral Coefficients (MFCC) feature extraction. This intel-
ligent system can correctly identify deep and deep-quick breathing 
patterns with 98% and 87.5% recall scores, respectively. Integrat-
ing FMCW and XGBoost offers a promising solution for early de-
tection and real-time monitoring of pneumonia. 
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1. INTRODUCTION 

Pneumonia is a respiratory infection 
that causes inflammation of the lung tissue 
and poses a significant threat to public 
health (de Benedictis et al., 2020). Fever, 
cough, and shortness of breath are some of 
its symptoms, which highlight the need for 
effective monitoring and early detection 
(Mani, 2018). Among these symptoms, in-
creased respiratory rates are especially 

important indicators (Htun et al., 2019). 
However, traditional methods for monitor-
ing vital signs often rely on contact-based 
devices, which can be intrusive and un-
comfortable for patients (Lee et al., 2018; 
Naranjo-Hernández et al., 2018). 

Radar technology has emerged as a 
promising solution for non-contact moni-
toring in the medical field (Singh et al., 
2021; Lv et al., 2021). Frequency-Modu-
lated Continuous Wave (FMCW) radar, in 
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particular, can capture detailed respiratory 
waveforms without direct physical contact 
(Alizadeh et al., 2019; Wang et al., 2021). 
This non-invasive approach meets the 
need for patient-friendly monitoring sys-
tems, especially for individuals at risk of 
respiratory illnesses like pneumonia. 

Radar-based monitoring involves col-
lecting and analyzing large and complex 
data sets, which require intelligent systems 
to process and interpret the signals. An in-
telligent agent is essential for classifying 
and analyzing breathing patterns effec-
tively, contributing to the early detection 
of pneumonia symptoms. The classifica-
tion covers various breath types, such as 
deep breaths, deep-quick breaths, quick 
breaths, hold breaths, and normal breaths. 
Previous studies have used different ap-
proaches for human vital sign processing, 
such as deep learning (Yoo et al., 2021), 
CNN (Kim & Han, 2019), Random Forest 
Classifier (Zhuang et al., 2022), and others. 
It has also been highlighted that real-time 
radar sensing and symptom detection de-
pend heavily on data acquisition, feature 
extraction, and classification algorithms 
(Le Kernec et al., 2019). 

This article focuses on the integration 
of eXtreme Gradient Boosting (XGBoost) 
into the classification process. XGBoost is a 
powerful machine learning algorithm that 
is well-suited for this task, as it can handle 
large data sets and complex relationships 
within the data (Wu et al., 2021). It excels 
in classifying patterns and has shown 

success in various applications, making it a 
suitable choice for the nuanced task of dis-
tinguishing between different breathing 
waveforms. Moreover, this algorithm has 
been used with imbalanced data sets, sim-
ilar to the case in this experiment (Zhang et 
al., 2022). 

Figure 1 shows the overview of the 
system, which uses an FMCW radar to 
monitor the patient in real-time, extract 
and classify breathing classes. The subse-
quent sections will explore the methodol-
ogy of using FMCW radar for non-contact 
respiratory monitoring, the intricacies of 
breathing waveform classification, and the 
advantages of XGBoost for this innovative 
approach. The ultimate goal is to contrib-
ute to the development of intelligent sys-
tems that play a pivotal role in early pneu-
monia detection and proactive healthcare 
monitoring. 

Our work only uses a lightweight 
XGBoost algorithm for the classification 
process, while previous works used more 
complex and computationally intensive al-
gorithms, such as stacked ensemble learn-
ing (Purnomo et al., 2022) or Transformer 
architecture (Avian et al., 2023). XGBoost is 
an ML algorithm that is based on decision 
trees and has advantages in terms of 
speed, efficiency, and performance 
(Purnomo et al., 2022; Ikeda & Fujimoto, 
2023). Considering that our device is used 
for real time measurement, we try to use a 
classification algorithm that is light but still 
produces good results. 

 

Figure 1. Main modules of the proposed system 
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In our previous research, we used 10-
fold cross validation (CV) (Purnomo et al., 
2022)  which was somewhat excessive or 
overkill. In this research, we use stratified 
k-fold with the consideration that it can 
overcome the problem of class imbalance 
and improve the accuracy of the model. 
Stratified k-fold is a variation of k-fold that 
preserves the proportion of each class in 
every fold, unlike k-fold that uses random 
sampling. This way, we can ensure that the 
training and testing data represent the 
original data distribution and reduce the 
bias or variance of the model.  

We consider using a fast and light-
weight algorithm because in real-world im-
plementation, we need a real-time detec-
tion algorithm and also light to install or 
apply to hardware so that we hope we do 
not need a high-spec computer to process 
our data. 

The rest of this paper will be struc-
tured into 5 sections. Section 2 explains the 
process of extracting breathing waveform 
using the radar. Section 3 provides details 
about how the dataset was obtained and 
its contents. Section 4 contains the algo-
rithm used for classification. Section 5 dis-
cusses the results, followed by a conclusion 
of the paper in Section 6. 

2. EXTRACTING BREATHING WAVEFORM 

The extraction of breathing wave-
forms through Frequency-Modulated Con-
tinuous Wave (FMCW) radar involves a 
comprehensive process, utilizing various 
phases to capture and record respiratory 
signals in detail. This section provides an 
in-depth exploration of how FMCW radar 
can be used to safely take human vital 
signs with its radiated power. Then, contin-
ued by explaining the essential concepts 
and signal processing techniques neces-
sary for obtaining breathing waveforms. 

 

2.1. FMCW Radar Safety 

The safety of using Texas Instrument 
IWR 1443 with Tx power 12dBM for human 
beings depends on the exposure levels to 
the radio frequency electromagnetic fields 
emitted by the radar. The exposure limits 
for the general public are based on the hu-
man body's specific absorption rate (SAR), 
which measures how much energy is ab-
sorbed by the tissues (Texas Instruments, 
2024). The SAR depends on the frequency 
and intensity of the electromagnetic field 
and the shape, size, and orientation of the 
human body (Texas Instruments, 2024). 

According to the datasheet of the IWR 
1443, the Tx power of the radar is 12 dBm, 
equivalent to 0.016 W (Kamath, 2017). As-
suming that the radar is operating at 80 
GHz and has a beamwidth of 10 degrees, 
the maximum SAR at a distance of 1 m 
from the radar antenna would be about 
0.0003 W/kg, which is well below the 
ICNIRP limits (Texas Instruments, 2024). 
However, the SAR would increase as the 
distance decreases or the power increases. 
Therefore, it is important to maintain a 
safe distance from the radar and avoid di-
rect exposure to the radar beam for pro-
longed periods. The safety of this radar 
also depends on the specific characteristics 
of the radar system and the environment. 
Therefore, following the manufacturer's 
instructions and precautions when using 
this radar is advisable. 

The radiated power of the IWR 1443 
radar is the product of the transmitted 
power and the antenna gain. According to 
the datasheet of the IWR 1443 (Texas In-
struments, 2018), the transmitted power 
of the radar is 12 dBm, equivalent to 0.016 
W (Texas Instruments, 2024). The antenna 
gain of the radar is 15 dBi, equivalent to 
31.6 (Texas Instruments, 2020). Therefore, 
the radiated power of the IWR 1443 radar 
is: 
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Figure 2. Signal processing steps for breathing waveform extraction. 

𝑃𝑟 = 𝑃𝑡 × 𝐺𝑎 
= 0.016 × 31.6 
= 0.5056 𝑊 

This means that the IWR 1443 radar 
emits about 0.5 W of power in the direc-
tion of its beam. However, the radiated 
power decreases as the distance from the 
radar increases, according to the inverse 
square law. Therefore, the radiated power 
at a certain distance from the radar can be 
calculated as Equation 1: 

𝑃𝑟(𝑑)  =  
𝑃𝑟

4𝜋𝑑2
 (1) 

where 𝑑 is the distance from the radar in 
meters. 

For example, at a distance of 1 m from 
the radar, the radiated power would be: 

𝑃𝑟(1) =  
0.5056

4𝜋 × 12
 

= 0.0403 𝑊
𝑚2⁄  

This is the power density of the radio 
frequency electromagnetic field at 1 m 
from the radar. The power density de-
creases as the distance increases, so the 
exposure levels to the field also decrease. 
To ensure the safety of human beings, the 
exposure levels should be below the 
ICNIRP guidelines. 

2.2. Waveform Extraction with FMCW 
Radar 

At the heart of FMCW radar is a grad-
ual change in frequency over time, forming 
the basis for its functionality. As the trans-
mitted FMCW radar signal undergoes this 
temporal frequency change, the received 
signal at a specific time index 't' reveals 

intricate details about the object's move-
ment, particularly its respiratory patterns.  

Extensive research has confirmed that 
radar systems are sensitive to phases, ena-
bling them to detect subtle movements 
like those associated with breathing sig-
nals. Capitalizing on this sensitivity, FMCW 
radar becomes a valuable tool for non-con-
tact respiratory monitoring, capable of 
identifying small vibrations induced by 
lung activity. This study uses the Texas In-
strument IWR1443 board, operating within 
the 77-88 GHz range. 

Error! Reference source not found. o
utlines essential procedures for extracting 
breathing waveforms from FMCW radar 
data. The process starts with Range FFT 
(Fast Fourier Transform) analysis, which 
identifies peaks in the frequency domain 
that correspond to subtle movements of 
the lungs. Next, Phase Extraction captures 
the phase information of the received ra-
dar signal. Phase Unwrapping corrects 
phase values to ensure continuity across 
2π intervals, enabling precise analysis. 

Phase Difference calculation measures 
variations in phase values, revealing the 
complex patterns of respiratory activity. 
Noise Removal filters out unwanted inter-
ference or artifacts that could affect the ac-
curacy of the signals. Finally, the signal 
passes through a Band Pass Filter (BPF) to 
isolate the desired frequency range (0.1 to 
0.5 Hz), resulting in the breathing wave-
form. These steps extract vital respiratory 
signals, forming the basis for a thorough 
analysis and interpretation. 
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3. DATASET DESCRIPTION AND FORMAT 

This chapter provides a detailed over-
view of the dataset used in this study, de-
scribing its characteristics and the format 
of the data. The data was collected by plac-
ing the radar in front of a seated person, as 
shown in Figure 3. The radar used was the 
IWR1443BOOST (Texas Instruments, 
2024). 

 

Figure 3. Illustration of recording a person’s 
breathing waveform using the FMCW radar. 

Each subject was instructed to per-
form five breathing patterns: normal 
breathing, quick breathing, holding their 
breath, deep breathing, and deep-quick 
breathing. Each waveform data was meas-
ured for five seconds, which was enough to 
represent one breathing pattern. The 
setup used to record the subject’s breath-
ing pattern can be seen in Figure 4. The ra-
dar is positioned facing the person at chest 
level and connected to a computer with a 
user interface for the radar’s data. 

 

Figure 4. Real-time measurement of breathing 
waveform using FMCW IWR1443 radar. 

The collected dataset contains 26,400 
records of labeled data, consisting of 2667 
instances of “quick” breathing, 19734 of 
“normal” breathing, 1066 of “deep” 
breathing, 800 of “deep-quick” breathing, 
and 2133 of “hold” breathing. Each record 
has 85 data points of the breathing signal 
level for five seconds. 

Figure 5 plots one instance of each 
breathing class. It visualizes how the 
breathing wave changes over time. Fur-
thermore, these graphs show how the 
breathing signal does not always oscillate 
around 0 on the y-axis, especially for quick 
breathing, indicating the need for a suita-
ble machine-learning model. 

 

 

Figure 5. Breathing waveform samples in the time domain (sampling rate of 17 measurements/second). 
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Figure 6. Breathing waveform classification block diagram. 

4. BREATHING WAVEFORM 
CLASSIFICATION 

The data undergoes a series of steps to 
produce an effective classification model 
using machine learning. Figure 6 shows the 
overview of this breathing waveform clas-
sification process. The dataset goes 
through preprocessing, followed by fea-
ture extraction, to enhance the quality of 
the data input into the model.  

The processed data is inputted into 
the machine learning model for training, 
validation, and testing. These data splits 
are determined by a cross-validation 
method to ensure the model's reliability 
and reduce bias. Hyperparameter tuning is 
also done to find the best configuration of 
the XGBoost model. Subchapters 4.1 
through 4.5 elaborate on these processes 
in more detail. 

4.1. Data Reading and Cleaning 

The data consists of breathing wave-
forms obtained from different people with 
different backgrounds (Table 1). They are 
collected using the IWR1443BOOST radar 

by Texas Instruments, using software de-
veloped in MATLAB. The feature has 84 
data points. Since the data was taken from 
different sources, merging them into a sin-
gle CSV file is needed. Therefore, about 
25,725 rows of data in a single file will be 
used for training and testing the machine 
learning model. 

As mentioned in Section 3, the dataset 
does not contain evenly spread-out data. 
Therefore, the training and testing data are 
equally composed of 840 and 160 rows, re-
spectively, for each class. This training data 
is split into 5 folds using the cross-valida-
tion method in Section 4.4, where 1-fold 
(128 rows) will be used for validation split 
and the remaining 4 folds for training split. 
In total, there are 2560 data used for train-
ing, 800 for testing, and 640 for validating. 
Therefore, the train-test-validation split in 
percentages is 64-20-16. The actual num-
bers of data used for each class and split is 
listed in Table 2. After splitting the data, 
the next method is to extract meaningful 
features from the data using MFCC feature 
extraction. 

 
Table 1. Samples of the breathing waveform dataset 

Time 0 
phase (radi-

ans) 

Time 1 
phase (radi-

ans) 

… Time 83 
phase (radi-

ans) 

Time 84 
phase (radi-

ans) 

label 

1.137026 1.309561 … 0.402893 1.050250 Normal 

-0.489525 -0.336083 … 0.163767 0.022457 Deep-quick 

-1.293316 -1.228519 … -0.484406 -1.460045 Quick 

-0.271695 0.130003 … 0.226376 -0.049865 Hold 

-0.090600 -0.493776 … 0.601362 0.367818 Deep 
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Table 2. Samples of the breathing waveform dataset 

Class 
Training Data  Testing Data 

Train Split Validation Split Test Split 

Normal 512 128  160 

Deep-quick 512 128  160 

Quick 512 128  160 

Hold 512 128  160 

Deep 512 128  160 

Total 2560 640  800 

 

4.2. MFCC Feature Extraction 

Feature extraction is a process in ma-
chine learning where relevant information 
is extracted from raw data to create a set 
of features that can be used as input for a 
model. The goal of feature extraction is to 
transform raw data into a set of meaning-
ful and relevant features that capture the 
essential characteristics of the data and 
can be used to train machine learning mod-
els for prediction or classification tasks. 

Mel-Frequency Cepstral Coefficients 
(MFCC) is a feature extraction technique 
widely used in machine learning for speech 
recognition and audio classification (Re-
jaibi et al., 2022). Since heart and breath 
waveforms are similar to audio signals, 
MFCC can be applied to classify them. 
From the 85 features in each data, this pro-
cess extracts them into a reduced dimen-
sion of 13 meaningful features. This simpli-
fied and enhanced data can then be passed 
to the machine learning model. 

4.3. Machine Learning Model 

The classification of breathing wave-
forms in this study is orchestrated through 
the implementation of the XGBoost ma-
chine learning algorithm, which represents 
a pivotal component of the methodology. 
XGBoost, renowned for its ensemble learn-
ing approach, constructs an array of deci-
sion trees and amalgamates their outputs 
to enhance predictive accuracy. Trained on 

a meticulously curated dataset encom-
passing diverse breathing patterns, the 
model exhibits adaptability to a spectrum 
of respiratory signals. The choice of 
XGBoost is underpinned by its inherent ro-
bustness and versatility. 

4.4. Cross Validation 

Cross-validation is a procedure that 
creates partitions of the data, where one 
part is used for testing while the rest is 
used for training. It is repeated multiple 
times with different training and testing 
parts combinations so that every data par-
tition is used for testing and training. This 
procedure helps avoid overfitting and ob-
tain more accurate results by taking the av-
erage performance from each partition. 

Stratified k-fold cross-validation is 
used, which works similarly to the k-fold 
method. K-fold cross-validation splits train-
ing data into k subsets of roughly equal 
sizes, and the model is trained on k-1 sub-
sets and evaluated on the remaining sub-
set. This process is repeated k times, with 
each subset serving as the validation data 
once. While stratified k-fold is similar to 
this, it also considers a balanced propor-
tion. It is especially useful when working 
with imbalanced datasets, where some 
classes have a much smaller number of 
samples than others. As mentioned in Sec-
tion 3, the dataset obtained from the vol-
unteers is highly imbalanced, where the 
“normal” breathing samples significantly 
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outweigh the others. The cross-validation 
method is used to make sure this imbal-
ance does not propagate to the ineffective-
ness of the machine learning model.  

4.5. Hyperparameter Tuning 

Every machine learning model has pa-
rameters. For example, in XGBoost, the pa-
rameters are “max_depth”, “learn-
ing_rate”, “n_estimators”, etc. Before run-
ning the evaluation, choosing the best pa-
rameter is needed to ensure that the out-
put is optimized. It can be done using a 
loop; however, this method might be too 
complex when finding multiple parame-
ters. Hyperparameter tuning is a handy 
tool for overcoming this problem. Grid 
Search is one of the hyperparameter tun-
ing methods that evaluate every combina-
tion of parameters. It tests all combina-
tions of the hyperparameters in a grid and 
outputs their most optimal combination. 

5. RESULTS AND DISCUSSION 

The multiclass XGBoost classifier was 
evaluated on its performance in categoriz-
ing breathing waveforms into five classes: 
"Deep", "Deep-quick", "Hold", "Normal", 
and "Quick". The model was evaluated us-
ing four different metrics: precision, recall, 
F1-score, and support. 

Precision shows the proportion of cor-
rect identifications. It is calculated using 
the number of true positives (TP) and false 
positives (FP) in Equation 2 (Ali et al., 
2021). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Recall explains how many of the actual 
positives are captured correctly. It is math-
ematically defined using the number of 
true positives (TP) and false negatives (FN) 
in Equation 3 (Ali et al., 2021). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

The F1 score is used to see the har-
monic mean between precision and recall, 
delving into how many of the overall pre-
dictions are correct. It is evaluated using 
Equation 4 where P and R are precision and 
recall scores (Ali et al., 2021). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 (4) 

Lastly, support serves as a functional-
ity to see how many occurrences a class 
has within a dataset. Different support val-
ues between classes suggest that the data 
is imbalanced and affects the model’s per-
formance.

 
Table 3. XGBoost breathing pattern classifier evaluation results.

Evaluation Precision Recall F1 score Support 

Deep 0.84409 0.98125 0.90751 160 

Deep-quick 0.88608 0.87500 0.88050 160 

Hold 0.95238 1.00000 0.97561 160 

Normal 0.80690 0.73125 0.76721 160 

Quick 0.87413 0.78125 0.82508 160 

Accuracy 
  

0.87375 800 

Macro avg 0.87271 0.87375 0.87118 800 

Weighted avg 0.87271 0.87375 0.87118 800 
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Table 3 displays the recorded values of 
each class's performance on all evaluation 
parameters. The breakdown of these re-
sults is explained with each breathing cat-
egory: 

1. Deep 

This class achieved a high precision (0.844), 
F1-score (0.908), and impressive recall 
(0.913) compared to the Hold class. This 
suggests that the Deep class is good at cor-
rectly identifying instances (precision) and 
balancing precision and recall (F1-score), 
as well as capturing true cases (recall). 

2. Deep-quick 

This class had a slightly higher precision 
(0.886) than the Deep class but had a lower 
recall (0.875) and F1-score (0.881). This 
suggests that the Deep-quick class is good 
at precision but not as good as the Deep 
class at capturing true instances (recall). 

3. Hold 

This class achieved the highest recall 
(1.000), precision (0.952), and F1-score 
(0.976) compared to the Deep and Deep-
quick classes. This suggests that the Hold 
class is very good at capturing all true in-
stances (recall) but may also classify some 

instances from other classes as Hold (pre-
cision). 

4. Normal 

This class had the lowest precision (0.807), 
recall (0.731), and F1-score (0.767) among 
all classes. This suggests that the Normal 
class is not very good at distinguishing it-
self from other classes. 

5. Quick 

This class had a precision (0.874) and F1-
score (0.825) similar to the Deep-quick 
class but had a lower recall (0.781). This 
suggests that the Quick class is similar to 
the Deep-quick class in terms of precision 
and F1-score but not as good at capturing 
true instances (recall). 

The results show that the Deep and 
Deep-quick classes performed well in 
terms of precision, recall, and F1-score, 
suggesting that they are well-defined and 
distinguishable by the XGBoost model. The 
Hold class also performed well in terms of 
recall but had lower precision, indicating 
some overlap with other classes. The Nor-
mal and Quick classes did not perform as 
well as the others, suggesting that they 
may be less clearly defined or may share 
characteristics with other classes.

 

Figure 7. Confusion matrix of performance by the XGBoost breathing pattern classifier



Purnomo, et al. An FMCW Radar-Based Intelligent System for Non-Contact Detection...| 80 

 

 
 

To visualize the algorithm's perfor-
mance, Figure 7 presents a confusion ma-
trix. The horizontal axis shows the pre-
dicted breathing classes, and the vertical 
axis shows the true classes. The "Hold" 
class is perfectly identified every time, fol-
lowed by the two other best-performing 
classes, "Deep" and "Deep-quick." Accu-
rate detection of these latter classes is cru-
cial to prevent missed diagnoses. Finally, 
the "Normal" class is the most ambiguous 
and is often detected as other classes. 
However, this is more tolerable because 
the consequence is not as severe as a 
missed diagnosis. 

In the context of using this multiclass 
classifier for health, the choice of the most 
important evaluation parameter depends 
on the specific application and its associ-
ated risks. However, considering the po-
tential negative consequences of missing 
true pneumonia cases (false negatives), re-
call becomes a crucial metric. Therefore, 
the Deep and Deep-quick classes, with 
their high recall and reasonable precision 
and F1-score, show this model as a prom-
ising candidate for applications where 
identifying true instances of specific 
breathing patterns related to pneumonia, 
such as deep and heavy breaths, is pivotal. 
It emerges as a potential tool for detecting 
and monitoring symptoms of respiratory 
disease. 

6. CONCLUSION 

This research has successfully ex-
plored the integration of FMCW radar and 
XGBoost for breathing waveform classifica-
tion, opening doors for a new era of intelli-
gent non-contact monitoring devices. The 
chosen machine learning algorithm, 
XGBoost, demonstrated remarkable mul-
ticlass classification capabilities, with clas-
ses like "Deep" and "Deep-quick" exhibit-
ing high precision and F1 scores, indicating 
clear differentiation and accurate 

identification. Most importantly, the 
"Deep-quick" class, characterized by its ex-
ceptional recall, provides a strong founda-
tion for applications were capturing true 
instances of specific breathing patterns, 
potentially indicative of early pneumonia, 
is pivotal. 

Beyond the impressive classification 
performance, the seamless integration of 
FMCW radar technology with XGBoost 
holds immense promise for the develop-
ment of intelligent non-contact monitoring 
devices. This technology has the potential 
to revolutionize respiratory healthcare. 

6.1. Future Works 

In this research, we have demon-
strated the feasibility and effectiveness of 
using FMCW radar and XGBoost for breath-
ing waveform classification, which can be 
applied for non-contact monitoring of 
pneumonia symptoms. However, there are 
still some limitations and challenges that 
need to be addressed in future works, such 
as: 

1. Evaluating the performance of the sys-
tem in different scenarios, such as dif-
ferent distances, angles, or environ-
ments. This can help assess the robust-
ness and reliability of the system in var-
ious conditions and challenges. 

2. Incorporating other physiological sig-
nals, such as heart rate, blood pres-
sure, or oxygen saturation, into the sys-
tem. This can help provide a more com-
prehensive and holistic picture of the 
patients' respiratory health and status. 

3. Improving feature extraction and selec-
tion methods for breathing waveform 
data. This can help reduce the data's di-
mensionality and noise and enhance 
the discriminative power and inter-
pretability of the features. 

4. Applying other data augmentation and 
balancing techniques for the 
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imbalanced dataset. This can help in-
crease the diversity and quantity of the 

data and mitigate the model's bias and 
overfitting.
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