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A B S T R A C T   A R T I C L E   I N F O  
 

Networks are fundamental models for representing and analyzing 
the structures of real-world systems. For instance, in social net-
works, nodes are used to represent users and edges represent 
the connection between users. Networks are also termed as 
graphs in the discrete mathematics language. One essential prob-
lem in networks is how to protect a limited number of nodes to 
prevent the spreading of malicious attacks or dangerous rumor in 
the networks, which is known as the graph protection problem. 
In this paper, an effective graph protection method called Pow-
erShield is proposed which pre-emptively protects critical nodes 
prior to any incoming attacks. It combines connectivity and cen-
trality criteria of the input graph. Connectivity criterion is meas-
ured by the principal eigenvector, i.e., the eigenvector corre-
sponding to the largest eigenvalue of the adjacency matrix of the 
input graph. Centrality criterion is defined by the degree centrali-
ty which considers nodes having more neighborhood relations to 
be more important. Contrary to the existing state-of-the-art 
method which takes into account only the connectivity criterion, 
the proposed method combines both criteria and empirically im-
proves the effectiveness of protection result. 
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1. INTRODUCTION 

With the rising popularity of massive-
scale online social networks such as Face-
book, Instagram, Twitter, etc., people are 
more connected and can share infor-
mation with each other (Wijayanto & 
Takdir, 2014; Zhuang et al., 2013). These 
platforms play a vital role in the dissemi-
nation of positive information such as new 
ideas, innovations, and hot topics. How-

ever, they may also become channels for 
the spreading of malicious rumors, misin-
formation, or even dangerous virus and 
malware. The rumor spreading can se-
verely threaten public safety and financial 
stability. For instance, some people may 
post on social networks a rumor about an 
upcoming big earthquake. It will cause 
chaos among society and hence may hin-
der the normal public order. In this situa-
tion, it is necessary to find individuals, if 
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their account deactivated or removed 
from the network, would block further 
rumor spreading. This problem is known 
as a graph protection problem with the 
goal is to select a set of nodes to be pro-
tected in order to prevent the spreading 
of attacks by maximizing the ratio of sur-
viving nodes in a network (Chen et al., 
2016; Wijayanto & Murata, 2017). In this 
problem, the protection budget constrains 
the number of nodes that are allowed to 
be protected. 

The structure of networks dictates 
how quickly the infection or information 
will propagate. We may exploit the net-
work structure to determine specific 
nodes for protection, such that the 
spreading of infection is considerably di-
minished. There are traditional approach-
es of node importance in graphs such as 
degree centrality (Newman, 2010), Pag-
eRank centrality (Page et al., 1999), close-
ness centrality (Dangalchev, 2006), etc. 
However, they are not designed specifical-
ly for infection spreading case (Chen et al., 
2016; Newman, 2010). Thus, there is no 
special attention for protection effective-
ness, which could lead to poor perfor-
mance in real-world networks. 

The spreading of attacks is commonly 
modeled using the epidemic model 
(Zhang & Prakash, 2014b). Most of the ex-
isting works in graph protection problem 
can be classified into two classes: pre-
emptive and post-emptive strategies. The 
former strategy aims to protect the critical 
nodes prior to epidemic attacks, behaving 
as prevention efforts (Wijayanto & Mura-
ta, 2018a; Tong et al., 2010). The critical 
nodes are the set of nodes assumed to 
contribute in blocking large-scale epidem-
ic spreading if being protected (Chen et 
al., 2016; Wijayanto & Murata, 2018a, 
2019). The later strategy post-allocates 
the protection while the epidemics have 
already propagated over the network, 
simulating as delayed reactions (Song et 

al., 2015; Zhang & Prakash, 2014b). The 
pre-emptive protection methods are nat-
urally applicable in the post-emptive 
strategy but not vice versa (Zhang & Pra-
kash, 2014a, 2015), thus they provide a 
wider range of applications. Given the 
benefit as prevention efforts, in this pa-
per, our focus is on developing an effec-
tive method for the pre-emptive graph 
protection strategy. 

The current state-of-the-art method 
in the graph protection problem is 
NetShield method by (Chen et al., 2016). 
It presented the utilization of perturbed 
matrix characteristics to define a sub-
modular protection measurement of a 
particular set of nodes. It also demon-
strated that the largest eigenvalue of the 
adjacency matrix represents the connec-
tivity of a particular graph. Thus, the set of 
nodes having a maximum drop in the ei-
genvalue of the adjacency matrix of the 
input network,  regarding their deletion 
from the network, have more necessity to 
be protected in order to break the graph 
connectivity. 

However, the NetShield method fo-
cused solely on the graph connectivity and 
ignored the beneficial property of graph 
centrality and edge directionality of 
graphs. In graph centrality, especially the 
degree centrality, nodes with more con-
nections are considered to be more im-
portant. In this paper, a new method 
called PowerShield was proposed which 
combines the connectivity and centrality 
criteria to determine the critical nodes in 
the preemptive graph protection strategy. 
Connectivity criterion is measured by the 
principal eigenvector, i.e., the eigenvector 
corresponding to the largest eigenvalue of 
the adjacency matrix (Chen et al., 2016; 
Prakash et al., 2012; Zhang & Prakash, 
2015). Centrality criterion is defined by 
the degree centrality which considers 
nodes with more neighborhood connec-
tions to be more important. The proposed 



79 | Indonesian Journal of Computing, Engineering, and Design, Volume 1 Issue 2, October 2019 Page 77-88 

 

method will be demonstrated the com-
bined criteria empirically improve the ef-
fectiveness of protection result.  

Furthermore, in this paper, the graph 
protection problem on single-layered stat-
ic networks will be formalized and an ex-
tensive experimental evaluation on the 
multiple real-world network datasets will 
be performed to demonstrate the effec-
tiveness of the proposed method. It is ex-
pected that the proposed method will 
outperform several other existing meth-
ods, such as NetShield, NetShield+, De-
gree, PageRank, SubGraph, etc.  

2. PROBLEM FORMULATION 

In this section, the definition of prob-
lems and terms used throughout this pa-
per will be formalized. Table 1 provides 
the main terms and notations used in the 
paper. 

Definition 1. Protecting a node means 
removing all of its connecting edges. The 
number of nodes we allow to protect is 
constrained by the protection budget (k ∈ 
Z > 0). At time t, a node in a network can 

belong to any of the following states: sus-
ceptible and infected. Attacking a node 
means initially infect the node in a net-
work. Figure 1 shows the example of pro-
tection and attack in a network. Green 
colored icon indicates the user is protect-
ed. Dashed green colored edges indicate 
the connections are removed or inactivat-
ed because of protection. The initial red-
colored user on the network indicates the 
user is attacked. Other red-colored users 
indicate the infected users. 

Definition 2. Graph Protection Problem. 
Let G = (V, E) be a connected single-
layered static graph with a set of nodes V 
and set of edges E. Let ϑ be the surviving 
ratio of nodes that remain uninfected at 
the end of epidemics. Given an input 
graph G, SIS or SIR epidemic model, and a 
protection budget k, the goal is to find a 
set of nodes S ∈ V such that ϑ is maxim-
ized, subject to the size of S is equal to 
constraint protection budget k. The pro-
tection is performed by removing all edg-
es connected to the set of nodes S in 
graph G. 

 

 

 

Figure 1. Example of the graph protection in a network 
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Table 1. Terms and notations 

Notations Definitions and Descriptions 

G = (V, E) graph G with the node set V and the edge set E 

k the protection budget (the number of nodes allowed to be protected) 

A adjacency matrix of graph G 

A (i, j) the i-th row and j-th column element of A 

A (i,:) the i-th row element of adjacency matrix  A 

A (:, j) the j-th column element of adjacency matrix A 

n number of nodes in graph G 

m number of edges in graph G  

 largest eigenvalue of adjacency matrix A 

 corresponding eigenvector of  

w (i,j) weight of edge connecting node i and j 

d (i) degree of node i  

PM (i) 
Protection Metric of node  i, a metric which represents the necessity 
of node i to be protected 

σ infection rate 

ρ recovery rate 

φ number of initial infected nodes in graph G 

ϑ ratio of surviving nodes at the end of epidemics in graph G 

S(t) the number of susceptible nodes at time t 

I(t) the number of infected nodes at time t 

 

Definition 3. SIS Epidemic Model. Suscep-
tible – Infected - Susceptible (SIS) is an ep-
idemic model which defines that each 
node in graph G with n number of nodes 
would be in one of the following two 
states: susceptible and infected. Let  
S(t) be the number of susceptible nodes, 
and let I(t) be the number of infected 
nodes at time t. At each timestamp t, sus-
ceptible nodes can be infected by their in-
fected neighbors with infection rate σ. Al-
so, each infected node can get recovered 
to a susceptible state with recovery rate 
ρ. 

Definition 4. SIR Epidemic Model. In the 
Susceptible – Infected - Recovered (SIR) 
epidemic model, each node in graph G be-
long to any of the susceptible, infected, or 

recovered state. Each of recovered node 
is resistant of any infection. 

3. PROPOSED METHOD 

In this section, the proposed pre-
emptive graph protection method on 
networks will be described. The main idea 
of this method is discussed first, which 
consists of the following key points: the 
connectivity criterion and the degree cen-
trality criterion. Then, the proposed 
method, called PowerShield, which com-
bines both of the criteria will be de-
scribed. 

3.1. The Connectivity Criterion 

Chen et al. introduced that the largest 

eigenvalue () of the adjacency matrix of 
a graph indicates the connectivity of the 



81 | Indonesian Journal of Computing, Engineering, and Design, Volume 1 Issue 2, October 2019 Page 77-88 

 

whole graph (Chen et al., 2016). The high-

er value of , the more connected the 

graph. Figure 2 illustrates the value of  in 
different network topology. For instance, 
given the same number of no des n = 5, 
clique topology (which each of its nodes is 
connected to all other nodes) has the 

largest value of , that is  = 4.00, com-
pared to the star and chain topologies 

with  = 2.00 and  = 1.73 respectively. 
Considering the connectivity, it is more 
likely that an epidemic will spread out in 
the graphs on the clique faster than those 
on the star and chain. 

In order to prevent the epidemic 
spreading in the networks, Wang et al. al-
so demonstrated the role of the largest 
eigenvalue as the epidemic threshold of 
arbitrary epidemic models on arbitrary 
networks (Wang et al., 2003). Epidemic 
threshold is an intrinsic property of a net-
work. When the strength of the infection 
is smaller than the epidemic threshold, 
then the epidemic could not spread over 
the network. Prakash et al. provided theo-
retical analysis and proof that if the infec-

tion strength < 1/, where  is the largest 
eigenvalue of adjacency matrix of the in-
put network, an epidemic would not 
spread (Prakash et al., 2012). Prakash et 
al. also confirmed the finding of Wang et 
al. in their evaluation that the epidemic 
threshold can be predicted using the larg-
est eigenvalue since the threshold relies 
upon the structure of the graph (Wang et 
al., 2003). 

In graph theory, the largest eigenval-

ue () of a graph also represents the ca-
pacity of the graph in terms of loop capac-
ity and path capacity (Chen et al., 2016; 
Prakash et al., 2012). Van Dam and Kooij 

also show that the smaller the value of , 
the more robust a network against infec-
tion spreading (van Dam & Kooij, 2007). 
The largest eigenvalue of the adjacency 

matrix () of the input graph as the con-
nectivity criterion is considered in this pa-
per. To assign the connectivity of each 
node, following Chung and Brouwer, each 
node is associated with a vector element 

of the principal eigenvector () (Brouwer 
& Haemers, 2012; Chung, 1997). The prin-

cipal eigenvector () is the corresponding 

eigenvector of . 

3.2. The Degree Centrality Criterion 

(Borgatti, 2005) and (Newman, 2010) 
discussed the important role of the de-
gree centrality in networks. There are 
many advantages of prioritizing the high 
degree nodes among the other nodes 
(Newman, 2010). The degree centrality 
can be interpreted in terms of the imme-
diate risk of a node for catching whatever 
is flowing through the network (for in-
stance: a virus, or some information) from 
its neighboring nodes. Regards to a di-
rected network (where edges have direc-
tion), two distinct measures of degree 
centrality are known, specifically indegree 
and outdegree.  

 

Figure 2. The largest eigenvalue (λ) indicates the graph connectivity (Chen et al., 2016). 
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In real-world social networks, when 
edges are associated with some positive 
aspects such as friendship or collabora-
tion, indegree is commonly presumed as a 
type of popularity, and outdegree as 
companionship. 

Borgatti (2005) analyzed and demon-
strated the correlation of the degree cen-
trality to information flow which is benefi-
cial to be considered in preventing the 
spreading of information or epidemics in 
networks. In the proposed method, the 
beneficial property of this centralization is 
incorporated to the method and consid-
ered it to be an important factor of the in-
fection spreading process. In any arbitrary 
undirected networks, the use of degree 
centrality as one of the criteria to deter-
mine the critical node will be suggested. 

In information or infection spreading, 
outdegree centrality is highly associated 
with how to control and prevent cascad-
ing infection as emphasized by (Borgatti, 
2005) and (Lee, Cotte, & Noseworthy, 
2010). Outdegree represents the possibil-
ity of certain infected nodes to infect their 
neighbors. Thus, in the proposed method, 
the outdegree as a centrality criterion for 
directed networks will be applied. In 

weighted networks, the weighted outde-
gree as the degree centrality criterion will 
be considered. 

3.3. PowerShield Algorithm 

To protect the set of critical nodes 
against the infection spreading, a metric 
for each node, called the Protection Met-
ric (PM), representing its necessity to be 
protected is considered. The higher score 
of the metric, the higher importance of 
the node to be selected in the protection 
scheme. 

The Protection Metric of node i is cal-
culated by combining the connectivity and 
the degree centrality criteria. The connec-
tivity criterion of each node which is rep-

resented by the principal eigenvector () 
has different order of magnitude with the 
degree value. According to (Marler & Aro-
ra, 2004) and (Gerasimov & Repko, 1978), 
given that both criteria have different or-
ders of magnitude and are assumed of the 
same importance, without having to nor-
malize each criterion, a combination of 
both criteria can be calculated as mul-
ticriterial optimization using product for-
mulation as follows: 

PM (i) = | i.d(i)|       (1) 

 

Algorithm 1. PowerShield method 

Data: Graph G = (V, E) 
Input: the adjacency matrix A and the protection budget k  

Output: a set S of k nodes 

 

1. Compute the largest eigenvalue  of A using Power method approximation; 

2. Let  be the corresponding eigenvector of  where i = 1,…,n; 

3. Let d (i) be the degree value of node i for i= 1,…,n; 

4. Initialize S to be empty; 
5. begin 

6.          PM (i) = | i.d(i)|; 
7.          for i = 1 to k do 

8.                 Let j ← argmax i PM (i), add j to set S; 
9.          end 

10.         return S 
11. end 
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Algorithm 1 provides the detail of the 
proposed PowerShield. It provides a set S 
of k nodes as the output and requires the 
adjacency matrix A and the protection 
budget k as the input. The largest eigen-

value () and its corresponding eigenvec-

tor () from the adjacency matrix A were 
computed. PM value of each node in step 
6 was assigned and k nodes with the high-
est PM score in step 7-9 was selected. 

4. EXPERIMENTAL SETTINGS 

4.1. Datasets 

The experiments were simulated on 
various real-world network datasets. Two 
types of network structures are provided: 
undirected and directed networks as 
summarized in Table 2. 

• Highschool is a social friendship net-
work between boys in a small high-
school in Illinois in 1957-1958. 

• Moreno-Sheep is a social network de-
scribes the dominance relationships 
between female bighorn sheep in Mon-
tana in 1984. 

• US Airports contains the flights net-
work between US airports in 2010. 

• Facebook Ego is the social network of 
user–user friendships in Facebook. 

• NeuralNetwork (Watts & Strogatz, 
1998) represents the neural network of 
C. Elegans species. 

• Dolphins (Lusseau et al., 2003) is a so-
cial network of frequent associations 
between 62 dolphins in New Zealand.  

4.2. Parameter Settings 

For effectiveness evaluation, the 
same parameters were used for all meth-
ods. Unless stated otherwise, the infec-
tion rate σ = 0.9 and the recovery rate ρ = 
0.6 under SIS epidemic model were used, 
as used by (Zhang & Prakash, 2015) and 
(Chen et al., 2016); the protection budget 
k = 20% for smaller datasets (less than 200 
nodes), k = 10% for larger datasets, and 
the number of initial infected nodes in a 
graph ϕ = k as suggested by (Chen et al., 
2016) were also applied. Random initiali-
zation to determine the infected nodes in 
was used. On each dataset, 100 times of 
simulations were conducted and the aver-
age was taken. For NetShield+ method, 
the default batch size was 2. 

4.3. Evaluation Metric 

The protection effectiveness result of 
all methods using the ratio of surviving 
nodes (ϑ) was compared. 

4.4. Comparison Methods 

The proposed method was compared 
with some existing baseline methods: De-
gree (Newman, 2010), PageRank (Page et 
al., 1999), EigenVector (Newman, 2010), 
SubGraph (Newman, 2010), KCoreness 
(Newman, 2010), Closeness (Dangalchev, 
2006), Greedy  (Chen et al., 2016), and the 
state-of-the-art methods: NetShield and 
NetShield+  (Chen et al., 2016). 

Table 2. Statistics of the dataset 

Name #nodes #edges Type 

Highschool 70 316 Directed Weighted 

Moreno-Sheep 28 250 Directed Weighted 

US Airports 1,574 28,236 Directed Weighted 

Facebook Ego 2,888 2,981 Undirected Unweighted 

Neural Network 297 2,345 Directed Weighted 

Dolphins 62 159 Undirected Unweighted 
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5.  RESULTS AND DISCUSSIONS 

5.1. Effectiveness Evaluations 

The methods were simulated on ran-
dom attack and provide average after 100 
simulations. Table 3 shows that Pow-
erShield outperforms the other methods 
regarding the highest average of surviving 
nodes ratio (ϑ) at the end of propagation 
after 100 timesteps. 

PowerShield also performs well in 
undirected networks by assuming the bi-
directionality of edges. In the directed 
weighted networks (Neural Network, US 
Airport, and Highschool), PowerShieldis 
able to improve the protection effective-
ness of the current state-of-the- art 
method: NetShield and its variant, called 
NetShield+. PowerShield could improve 
up to 2% of surviving nodes ratio. 

 
 

 

Table 3. Effectiveness Evaluation 

Methods 
Highschool Moreno-Sheep US Airports 

Average Std. Dev. Average Std. Dev. Average Std. Dev. 

Degree 0.7040 0.0081 0.7293 0.0244 0.7319 0.0013 

PageRank 0.7049 0.0089 0.7321 0.0261 0.7319 0.0012 

EigenVector 0.7037 0.0083 0.7332 0.0256 0.7319 0.0014 

SubGraph 0.7030 0.0074 0.7318 0.0256 0.7322 0.0014 

Kcoreness 0.7049 0.0082 0.7318 0.0251 0.7321 0.0013 

Greedy 0.7043 0.0080 0.7325 0.0261 0.7319 0.0013 

NetShield 0.7037 0.0083 0.7325 0.0261 0.7768 0.0145 

NetShield+ 0.7054 0.0083 0.7332 0.0261 0.7315 0.0015 

PowerShield 0.7064 0.0087 0.7479 0.0300 0.7326 0.0015 
 

Methods 
Facebook Ego Neural Network Dolphins 

Average Std. Dev. Average Std. Dev. Average Std. Dev. 

Degree 0.8817 0.0843 0.7079 0.0032 0.8592 0.0200 

PageRank 0.8978 0.0806 0.7072 0.0031 0.8639 0.0243 

EigenVector 0.8944 0.0777 0.7074 0.0037 0.8616 0.0216 

SubGraph 0.8903 0.0743 0.7071 0.0038 0.8618 0.0244 

Kcoreness 0.8804 0.0791 0.7078 0.0034 0.8634 0.0241 

Greedy 0.8966 0.0811 0.7082 0.0032 0.8611 0.0229 

NetShield 0.8858 0.0729 0.7072 0.0032 0.8581 0.0205 

NetShield+ 0.8886 0.0777 0.7074 0.0031 0.8603 0.0254 

PowerShield 0.9059 0.0779 0.7086 0.0034 0.8685 0.0239 
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5.2. Sensitivity to Epidemic Parameters 

In this section, the parameter sensi-
tivity of the PowerShield method when 
applied to several different combination 
of simulation parameters was analyzed. 
Simulations to investigate the perfor-
mance of the PowerShield method under 
three scenarios were performed: 

(1) Comparison of survival ratio ϑ when 
the infection rate (σ) changes 

(2) Comparison of survival ratio ϑ when 
the recovery rate (ρ) changes 

(3) Comparison of survival ratio ϑ when 
the epidemic propagation rate (σ / ρ) 
changes 

For a fair analysis and comparison, 
simulations are performed under a fixed 
protection budget (k). 

 

Figure 3. Sensitivity evaluation to the infection 
rate (σ) 

5.2.1. Comparison of survival ratio (ϑ) 
when the infection rate (σ) changes 

Figure 3 shows the comparison of 
survival ratio (ϑ) of all methods with the 
changing of the infection rate (σ) from 

{0.9; 0.8; 0.7; 0.6; 0.5; 0.4; 0.3; 0.2; 0.1} 
and fixed recovery rate (ρ = 0.5). The re-
sults are averaged from 100 simulations 
with a fixed protection budget k = 0.25N, 
where N is the number of nodes of the in-
put network. The proposed method 
achieves the highest survival ratio regard-
less of the value of infection rate and epi-
demic models. 

 

Figure 4. Sensitivity evaluation to the recovery 
rate (ρ) 

5.2.2. Comparison of survival ratio (ϑ)  
when the recovery rate (ρ) changes 

Similarly, in the sensitivity analysis to 
the recovery rate (ρ), as shown in Figure 
4, the recovery rate (ρ) from {0.9; 0.8; 0.7; 
0.6; 0.5; 0.4; 0.3; 0.2; 0.1} was changed. 
The infection rate (σ = 0.5) and protection 
budget k = 0.25N, where N is the number 
of nodes of the input network were fixed. 
The PowerShield method maintain the 
highest survival ratio (ϑ) regardless the 
value of recovery rate and epidemic mod-
els. 
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Figure 5. Sensitivity evaluation to the epidemic 
propagation rate (σ/ρ) 

5.2.3. Comparison of survival ratio (ϑ) 
when the epidemic propagation 
rate (σ/ρ) changes 

The changing of the epidemic propa-
gation rate (σ/ρ) from { 0.9/0.1 ; 0.8/0.2 ; 
0.7/0.3 ; 0.6/0.4 ; 0.5/0.5 ; 0.4/0.6 ; 
0.3/0.7; 0.2/0.8 ; 0.1/0.9} was simulated. 
Figure 5 shows the comparison of survival 
ratio in SIS and SIR epidemic models. The 
results are averaged from 100 simulations 
under the fixed protection budget k = 

0.25N, with N is the number of nodes of 

the input network. All comparison meth-
ods achieve very high survival ratio when 
the epidemic propagation rate (σ/ρ) is 
very small, then by the increasing the val-
ue of σ/ρ, the resulted survival ratios are 
also decreasing. The PowerShield method 
maintain the superiority regardless the 
values of σ/ρ but with a small margin. 

6. CONCLUSION 

In this paper, the problem of protect-
ing a limited number of nodes to restrain 
the spreading of malicious attacks or dan-
gerous rumor in the networks, called as 
the graph protection problem were ad-
dressed. An effective graph protection 
method on networks, called PowerShield 
which combines the connectivity and de-
gree centrality criteria was proposed. 
Evaluation on various real graph datasets 
shows that the PowerShield outperforms 
the state-of-the-art algorithm in terms of 
protection effectiveness.  

Future direction on this problem 
might be focused on the investigation of 
more complex network settings such as 
probabilistic network and partially ob-
servable network. The theoretical frame-
work using discrete optimization could al-
so worth be studied to provide the esti-
mated upper and lower bound of protec-
tion result.   
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