Analyzing Fast-ions Trajectories in a Nuclear Fusion Reactor through Its Poincaré-Island Size and Ripple Resonance
DOI:
https://doi.org/10.35806/ijoced.v3i2.155Keywords:
Fast ion, Full orbit, Guiding center, Magnetic resonance, Precession island, TokamakAbstract
Fast-ions confinement is a prominent subject in developing nuclear fusion reactors due to its importance in sustaining the burning plasma and keeping energy production. However, confining them has proven to be difficult until now, and one of the reasons is that the inherent discrete magnetic field produces a magnetic ripple. A better understanding of fast-ions transport using appropriate numerical calculation tools needs to be developed to overcome such a challenge in the engineering aspect. This study revisited data collection of fast ion transport simulated under the ripple presence in a nuclear fusion device. The ion trajectories were followed using two orbit-following equation schemes, and the ripple-resonance island size in the Poincaré section was compared. The result showed that the island size obtained by each scheme was different when the particle resonates with a stronger ripple field and, proportionally, the diffusion coefficients are different. The physical meaning and consequence behind this discovery were discussed in this paper.
References
Garzotti, L., Barbato, E., Garcia, J., Hayashi, N., Voitsekhovitch, I., Giruzzi, G., … Zagórski, R. (2018). Analysis of JT-60SA operational scenarios. Nuclear Fusion, 58(2). https://doi.org/10.1088/1741-4326/aa9e15
Goldston, R. J., White, R. B., & Boozer, A. H. (1981). Confinement of high-energy trapped particles in Tokamaks. Physical Review Letters, 47(9), 647–649. https://doi.org/10.1103/PhysRevLett.47.647
Harrison, R. (2019). Overview of new MAST physics in anticipation of first results from MAST Upgrade. Nuclear Fusion, 59, 112011. https://doi.org/10.1088/1741-4326/ab121c
Hirayama, T., Shimizu, K., Tani, K., Shirai, H., & Kikuchi, M. (1988). Experimental transport analysis code system in JT-60. Retrieved from http://inis.iaea.org/search/search.aspx?orig_q=RN:19089954
Hosseininejad, M., Ghoranneviss, M., & Salem, M. K. (2020). Ripple transport and neoclassical diffusion in IR-T1 tokamak. Journal of Theoretical and Applied Physics, 14(1), 93–99. https://doi.org/10.1007/s40094-019-00352-6
ITER Physics Expert Group, & ITER Physics Basis Editors. (1999). Chapter 5: Physics of energetic ions. Nuclear Fusion, 39(12), 2471–2495.
JT-60SA Research Unit. (2018). JT-60SA Research Plan. Retrieved from http://www.jt60sa.org/pdfs/JT-60SA_Res_Plan.pdf
Kurniawan, A. B., Tsutsui, H., Tani, K., & Shinohara, K. (2020). Estimating ripple transport of moderately-confined fast tritons by D-D fusion in JT-60SA tokamak. Plasma and Fusion Research, 15(2403057), 1–6. https://doi.org/10.1585/pfr.15.2403057
López, J. E., Orozco, E. A., Dugar-Zhabon, V. D., & Cardenas, P. A. (2019). López_2019_J._Phys.__Conf._Ser._1386_012128.pdf. Journal of Physics: Conference Series, 1386, 012128. https://doi.org/10.1088/1742-6596/1386/1/012128
McClements, K. G. (2005). Full orbit computations of ripple-induced fusion α -particle losses from burning tokamak plasmas. Physics of Plasmas, 12(7), 1–8. https://doi.org/10.1063/1.1936532
Mcclements, K. G., Tani, K., Akers, R. J., Liu, Y. Q., Shinohara, K., & Tsutsui, H. (2018). confinement and neutron emission in the Mega The effects of resonant magnetic perturbations and charge-exchange reactions on fast ion confinement and neutron emission in the Mega Amp Spherical Tokamak. Plasma Physics and Controlled Fusion, 60(095005). https://doi.org/10.1088/1361-6587/aad252
Mimata, H., Tani, K., Tobita, K., Tsutsui, H., Tsuji-Iio, S., & Shimada, R. (2008). Finite Larmor radius effects on ripple diffusion in tokamaks. Progress in Nuclear Energy, 50(2–6), 638–642. https://doi.org/10.1016/j.pnucene.2007.11.071
Mimata, Hideyuki, Tani, K., Tsutsui, H., Tobita, K., Tsuji-Iio, S., & Shimada, R. (2009). Numerical study of the ripple resonance diffusion of alpha particles in tokamaks. Plasma and Fusion Research: Regular Articles, 4(008).
Mimata, Hideyuki, Tsutsui, H., Tsuji-Iio, S., Shimada, R., & Tani, K. (2008). A theoretical model of ripple resonance diffusion of alpha particles. Proceedings of ITC18, P1(35), 261–264.
Ogawa, K., Isobe, M., Nishitani, T., Murakami, S., Seki, R., Nuga, H., … Osakabe, M. (2019). Energetic ion confinement studies using comprehensive neutron diagnostics in the Large Helical Device. Nuclear Fusion, 59(7). https://doi.org/10.1088/1741-4326/ab14bc
Onofrio, R. (2018). Concepts for a Deuterium–Deuterium Fusion Reactor. Journal of Experimental and Theoretical Physics, 127(5), 883–888. https://doi.org/10.1134/S1063776118110171
Reichert, S. (2019). Triton burn-up. Nature Physics, 15(7), 622. https://doi.org/10.1038/s41567-019-0590-9
Tani, K., Nishio, S., Tobita, K., Tsutsui, H., Mimata, H., Tsuji-Iio, S., & Aoki, T. (2009). Ripple loss of alpha particles in a low-aspect ratio tokamak reactor. IEEJ Transactions on Fundamentals and Materials, 129(9), 2004. https://doi.org/10.1541/ieejfms.129.569
Tani, K., Takizuka, T., & Azumi, M. (1993). Ripple loss of alpha particles in a tokamak reactor with a noncircular plasma cross-section. Nuclear Fusion, 33(6), 903.
Tani, Keiji, Azumi, M., Kishimoto, H., & Tamura, S. (1981). Effect of Toroidal Field Ripple on Fast Ion Behavior in a Tokamak. Journal of the Physical Society of Japan, 50(5), 1726–1737. https://doi.org/https://doi.org/10.1143/JPSJ.50.1726
Tobita, K., Tani, K., Kimura, H., Kusama, Y., Isobe, M., & Tobita, K. (1997). Loss of fast tritons in JT-6OU reversed magnetic shear discharges. Nuclear Fusion, 37(1583).
White, R. B., Gorelenkov, N. N., Duarte, V. N., & Berk, H. L. (2018). Resonances between high energy particles and ideal magnetohydrodynamic modes in tokamaks. Physics of Plasmas, 25(10), 102504. https://doi.org/10.1063/1.5046655
Yushmanov, P. N. (1990). Diffusive transport processes caused by ripple in tokamaks. Review of Plasma Physics (Ed. B.B. Kadomtsev), 16, 117–241.