Lessons from Brazil: Opportunities of Bioethanol Biofuel in Indonesia
DOI:
https://doi.org/10.35806/ijoced.v4i1.239Keywords:
Bioethanol, biofuel, Brazil, Indonesia, sugarcaneAbstract
Brazil has a long tradition of bioethanol production from sugarcane. Following the Middle East crisis in the 1970s, the oil price increased twofold, doubling Brazil’s spending on oil imports. As a result, the country had to find an alternative type of fuel to reduce its expenditure on conventional petrol fuels. With its vast tropical land conditions, the Brazilian government then put massive effort to establish the infrastructure and research of bioethanol from 1975 and 1989. Research plays a pivotal role in the success of Brazil’s ethanol industry. The country was heavily criticised at the beginning of the programme, but today, Brazil is the second-largest ethanol producer after the USA. Brazil produces the cheapest ethanol in the world and does not depend on fossil fuel to supply its energy demand. Indonesia and Brazil share the same landscape and geographical advantages. This paper aims to discuss the success of the Brazilian bioethanol industry and draw important lessons from it. In a nutshell, Indonesia should increase bioethanol production from renewable sources. Also, the modernization of distilleries facilities, the establishment of new production plants, the introduction of subsidies and the reduction of taxes for ethanol producers are needed. In summary, apart from massive research and development, we concluded that effective and strong long-term government commitment play important role in shaping the future of the Indonesian bioethanol industry.
References
Ben Jebli, M., Farhani, S., & Guesmi, K. (2020). Renewable energy, CO2 emissions and value added: Empirical evidence from countries with different income levels. Structural Change and Economic Dynamics, 53. https://doi.org/10.1016/j.strueco.2019.12.009
Datta, A., & Mandal, B. K. (2016). Impact of alcohol addition to diesel on the performance combustion and emissions of a compression ignition engine. Applied Thermal Engineering, 98. https://doi.org/10.1016/j.applthermaleng.2015.12.047
Ge, S., Yek, P. N. Y., Cheng, Y. W., Xia, C., Wan Mahari, W. A., Liew, R. K., Peng, W., Yuan, T. Q., Tabatabaei, M., Aghbashlo, M., Sonne, C., & Lam, S. S. (2021). Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. In Renewable and Sustainable Energy Reviews (Vol. 135). https://doi.org/10.1016/j.rser.2020.110148
Hossain, N., Mahlia, T. M. I., & Saidur, R. (2019). Latest development in microalgae-biofuel production with nano-additives. In Biotechnology for Biofuels (Vol. 12, Issue 1). https://doi.org/10.1186/s13068-019-1465-0
Katijan, A., Latif, M. F. A., Zahmani, Q. F., Zaman, S., Kadir, K. A., & Veza, I. (2019). An Experimental Study for Emission of Four Stroke Carbureted and Fuel Injection Motorcycle Engine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 62(2), 257–265.
Li, X., Zhen, X., Xu, S., Wang, Y., Liu, D., & Tian, Z. (2021). Numerical comparative study on knocking combustion of high compression ratio spark ignition engine fueled with methanol, ethanol and methane based on detailed chemical kinetics. Fuel, 306. https://doi.org/10.1016/j.fuel.2021.121615
Lv, Z., Wang, Z., & Xu, W. (2019). A techno-economic study of 100% renewable energy for a residential household in China. Energies, 12(11). https://doi.org/10.3390/en12112109
Mierlo, J. Van, Berecibar, M., Baghdadi, M. El, De Cauwer, C., Messagie, M., Coosemans, T., Jacobs, V. A., & Hegazy, O. (2021). Beyond the state of the art of electric vehicles: A fact-based paper of the current and prospective electric vehicle technologies. In World Electric Vehicle Journal (Vol. 12, Issue 1). https://doi.org/10.3390/wevj12010020
Mitra, S., Ghose, A., Gujre, N., Senthilkumar, S., Borah, P., Paul, A., & Rangan, L. (2021). A review on environmental and socioeconomic perspectives of three promising biofuel plants Jatropha curcas, Pongamia pinnata and Mesua ferrea. In Biomass and Bioenergy (Vol. 151). https://doi.org/10.1016/j.biombioe.2021.106173
Mohammed, A. T., Jaafar, M. N. M., Othman, N., Veza, I., Mohammed, B., Oshadumi, F. A., & Sanda, H. Y. (2021). Soil fertility enrichment potential of Jatropha curcas for sustainable agricultural production: A case study of Birnin Kebbi, Nigeria. Annals of the Romanian Society for Cell Biology, 25(4), 21061–21073.
Pattanaik, L., Pattnaik, F., Saxena, D. K., & Naik, S. N. (2019). Biofuels from agricultural wastes. In Second and Third Generation of Feedstocks: The Evolution of Biofuels. https://doi.org/10.1016/B978-0-12-815162-4.00005-7
Pizarro-Alonso, A., Cimpan, C., Ljunggren Söderman, M., Ravn, H., & Münster, M. (2018). The economic value of imports of combustible waste in systems with high shares of district heating and variable renewable energy. Waste Management, 79. https://doi.org/10.1016/j.wasman.2018.07.031
Roslan, M. F., Veza, I., & Said, M. F. M. (2020). Predictive simulation of single cylinder n-butanol HCCI engine. IOP Conference Series Materials Science and Engineering. https://doi.org/10.1088/1757-899X/884/1/012099
Rozina, Asif, S., Ahmad, M., Zafar, M., & Ali, N. (2017). Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan. In Renewable and Sustainable Energy Reviews (Vol. 74). https://doi.org/10.1016/j.rser.2017.02.036
Rusli, M. Q., Said, M. M., Sulaiman, A. M., Roslan, M. F., Veza, I., Perang, M. R. M., Lau, H. L. N., & Wafti, N. S. A. (2021). Performance and Emission Measurement of a Single Cylinder Diesel Engine Fueled with Palm Oil Biodiesel Fuel Blends. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/1068/1/012020
Saad, M. G., Dosoky, N. S., Zoromba, M. S., & Shafik, H. M. (2019). Algal biofuels: Current status and key challenges. Energies, 12(10). https://doi.org/10.3390/en12101920
Shi, X., Pang, X., Mu, Y., He, H., Shuai, S., Wang, J., Chen, H., & Li, R. (2006). Emission reduction potential of using ethanol-biodiesel-diesel fuel blend on a heavy-duty diesel engine. Atmospheric Environment, 40(14). https://doi.org/10.1016/j.atmosenv.2005.12.026
Shim, E., Park, H., & Bae, C. (2020). Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel, 262. https://doi.org/10.1016/j.fuel.2019.116436
Sim, J. (2018). The economic and environmental values of the R&D investment in a renewable energy sector in South Korea. Journal of Cleaner Production, 189. https://doi.org/10.1016/j.jclepro.2018.04.074
Trovato, V., & Kantharaj, B. (2020). Energy storage behind-the-meter with renewable generators: Techno-economic value of optimal imbalance management. International Journal of Electrical Power and Energy Systems, 118. https://doi.org/10.1016/j.ijepes.2019.105813
Veza, I., Muhammad, V., Oktavian, R., Djamari, D. W., & Muhamad Said, M. F. (2021). Effect of COVID-19 on Biodiesel Industry: A Case Study in Indonesia and Malaysia. International Journal of Automotive and Mechanical Engineering, 18(2). https://doi.org/10.15282/ijame.18.2.2021.01.0657
Veza, I., Roslan, M. F., Said, M. F. M., & Latiff, Z. A. (2020). Potential of range extender electric vehicles (REEVS). IOP Conference Series: Materials Science and Engineering, 884(1). https://doi.org/10.1088/1757-899X/884/1/012093
Veza, I., Roslan, M. F., Said, M. F. M., Latiff, Z. A., & Abas, M. A. (2020). Cetane index prediction of ABE-diesel blends using empirical and artificial neural network models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/https://doi.org/10.1080/15567036.2020.1814906
Veza, I., Roslan, M. F., Said, M. F. M., Latiff, Z. A., & Abas, M. A. (2021). Physico-chemical properties of Acetone-Butanol-Ethanol (ABE)-diesel blends: Blending strategies and mathematical correlations. Fuel, 286. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119467
Veza, I., Said, M. F. M., & Latiff, Z. A. (2020). Improved Performance, Combustion and Emissions of SI Engine Fuelled with Butanol: A Review. International Journal of Automotive and Mechanical Engineering (IJAME), 17(1). https://doi.org/https://doi.org/10.15282/ijame.17.1.2020.13.0568
Veza, I., Said, M. F. M., & Latiff, Z. A. (2021). Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass and Bioenergy, 144. https://doi.org/https://doi.org/10.1016/j.biombioe.2020.105919
Veza, I., Said, M. F. M., Latiff, Z. A., & Abas, M. A. (2021). Application of Elman and Cascade neural network (ENN and CNN) in comparison with adaptive neuro fuzzy inference system (ANFIS) to predict key fuel properties of ABE-diesel blends. International Journal of Green Energy, 1814, 1510–1522. https://doi.org/https://doi.org/10.1080/15435075.2021.1911807
Veza, I., Said, M. F. M., Latiff, Z. A., Hasan, M. F., Jalal, R. I. A., & Ibrahim, N. M. I. N. (2019). Simulation of predictive kinetic combustion of single cylinder HCCI engine. AIP Conference Proceedings. https://doi.org/https://doi.org/10.1063/1.5085960
Veza, I., Zaid, M. F. M., & Latiff, Z. A. (2019). Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review. Fuel Processing Technology, 196(106179). https://doi.org/https://doi.org/10.1016/j.fuproc.2019.106179
Zhen, X., Li, X., Wang, Y., Liu, D., & Tian, Z. (2020). Comparative study on combustion and emission characteristics of methanol/hydrogen, ethanol/hydrogen and methane/hydrogen blends in high compression ratio SI engine. Fuel, 267. https://doi.org/10.1016/j.fuel.2020.117193