Finite Element Simulation of Power Weeder Machine Frame

  • Angger Bagus Prasetiyo Department of Mechanical Engineering, Faculty of Industrial Technology, Institut Teknologi Nasional Yogyakarta, Indonesia
  • Kartinasari Ayuhikmatin Sekarjati Department of Industrial Engineering, Faculty of Industrial Technology, Institut Sains & Teknologi AKPRIND Yogyakarta, Indonesia

Abstract

One of the agricultural technologies that have evolved recently is the weeding machine. This device was developed to aid farmers in the weed-control procedure. The engine frame is one of the primary elements of the weed wacker. The most crucial component of agricultural equipment is the frame or chassis since it serves as the foundation for mounting other parts. To examine the stress and strength of the frame, this study models the frame of a power weeder machine utilizing finite element analysis using the SolidWorks 2022 program. A total load of 120 N is applied to the AISI 316L used for the frame. The analysis's findings indicate that the maximum von Mises stress value is about 2.51 107N/m2, the greatest deformation is 0.556 mm, and the safety factor is 6.8. With AISI 316L material, the frame design of the power weeder machine in this study is safe to endure up to 140 N.

Downloads

Download data is not yet available.

References

Al-Shammari, M. A., Qasim , H. B., Al-Waily, M., & Hasson, A. (2020). Fatigue Behavior of Steel Beam Coated with Nanoparticles under High Temperature. Journal of Mechanical Engineering Research and Developments, 43(4), 287-298.

Al-Waily, M., & Abud Almalik Abud Ali, Z. (2015). A Suggested Analytical Solution of Powder Reinforcement Effect on Buckling Load for Isotropic Mat and Short Hyper Composite Materials Plate. International Journal of Mechanical and Mechatronics Engineering, 15(4), 80–95.

Ansys Release. (2013). ANSYS Mechanical APDL Thermal Analysis Guide. Analysis 16.1, 26–34. Retrieved from Ansys Release.

Ansys Release Documentation. (2005). ANSYS Workbench Release 10.0. ANSYS Workbench Release 10.0. Retrieved from http://kashanu.ac.ir/Files/Content/ANSYS Workbench.pdf.

Awwaluddin, M. (2019). Analisa Kekuatan Rangka Sepeda Listrik Menggunakan Software SolidWorks. Journal of Technical Engineering, 3(1), 5-16. doi:https://doi.org/http://dx.doi.org/10.32493/pjte.v3i1.7486

Baihaki, M. I., & Bintoro, C. (2021). Aplikasi Desain Generatif Pada Rangka Sepeda Dengan Menggunakan Perangkat Lunak Solidworks Dan Matlab Simulink. Jurnal INOVTEK Seri Mesin, 2(1), 2-5. Retrieved from http://ejournal.polbeng.ac.id/index.php/ISM/article/view/2329

Cekus, D., Gnatowska, R., Paweł, K., & Šofer, M. (2019). Simulation Research of a Wind Turbine Using SolidWorks Software. Journal of Physics: Conference Series, 1398(1). doi:https://doi.org/10.1088/1742-6596/1398/1/012001

Chen, H., Zhou, X., Feng, Z., & Cao, S. J. (2021). Application of polyhedral meshing strategy in indoor environment simulation: Model accuracy and computing time. Indoor and Built Environment, 1-13. doi:https://doi.org/10.1177/1420326X211027620

Chiad, J. S., Al-Waily, M., & Al-Shammari, M. A. (2018). Buckling Investigation of Isotropic Composite Plate Reinforced by Different Types of Powders. International Journal of Mechanical Engineering and Technology, 9(9), 305-317.

Chirende, B., Li, J. Q., & Vheremu, W. (2019). Application of Finite Element Analysis in Modeling of Bionic Harrowing Discs. Biomimetics, 4(3), 1-11. doi:https://doi.org/10.3390/biomimetics4030061

Dantulwar, N. B., Maske, R. G., & Patel, J. T. (2017). Finite Element Analysis of Ball
Valve Assembly for Earthquakes. International Conference on Ideas, Impact and Innovation in Mechanical Engineering, 5(6), 1460–1467.

Dobrovolsky, K. Z. (1973). Machine Elements : A Textbook. Moscow: Peace.

Doustdar, Mehdi, M., & Kazemi, H. (2019). Effects of Fixed and Dynamic Mesh Methods on Simulation of Stepped Planning Craft. Journal of Ocean Engineering and Science, 4(1), 33-48. doi:https://doi.org/10.1016/j.joes.2018.12.005

Elishakoff, I. (2004). Safety Factors and Reliability: Friends or Foes. 1st ed. Springer Netherlands. doi:https://doi.org/10.1007/978-1-4020-2131-2

García Pérez, M., & Vakkilainen, E. (2019). A Comparison of Turbulence Models and Two and Three Dimensional Meshes for Unsteady CFD Ash Deposition Tools. Fuel 237 (September 2018), 806-811. doi:https://doi.org/10.1016/j.fuel.2018.10.066

Gheorghe, G. V., Persu, C., Gageanu, I., & Cujbescu, D. (n.d.). Structural and Modal Analysis in Solidworks of Basic Structure of Equipment to Prepare Germinative Bed in Strips. Engineering for Rural Development 17 (May), 818–826. doi:https://doi.org/10.22616/ERDev2018.17.N064

Hertzberg, R. W., Vinci, R. P., & Hertzberg, J. L. (2012). Deformation and Fracture Mechanics of Engineering Materials (5th ed.). Wiley. Retrieved from https://en.id1lib.org/book/3364788/eaccde

Hutton, D. V. (2003). Fundamentals of Finite Element Analysis (1st ed.). McGraw-Hill Science/Engineering/Math. Retrieved from https://en.id1lib.org/book/445247/341616

Juvinall, R. C. (1967). Engineering Considerations of Stress, Strain, and Strength (1st ed.). United States: McGraw-Hill College.

Juvinall, R. C., & Marshek, K. M. (2011). Fundamentals of Machine Component Design (5th ed.). (5th, Ed.) United States: Jhon Willey & Sons inc.

Jweeg, M. J., Hamzah, H. A., Al-Waily, M., & Al-Shammari, M. A. (2021). A Finite Element Simulation of Nano Effects on Stress Distribution in a Below Knee Prosthetic. IOP Conference Series: Materials Science and Engineering, 1067(1), 012141. doi:https://doi.org/10.1088/1757-899x/1067/1/012141

Karmankar, R. G. (2017). Analysis of Von- Mises-Stress for Interference Fit and Pull- Out States By Using Finite Element Method. International Research Journal of Engineering and Technology, 4(11), 1367-1374. doi:https://doi.org/10.13140/RG.2.2.26447.79520

Kelly, J. (2015). Stainless Steels, In: Mechanical Engineers’ Handbook – Materials and Mechanical Design (Vol. 7). (M. Kutz, Ed.) United States of America, United States of America: John Wiley & Sons: John Wiley & Sons. doi:https://doi.org/https://doi.org/10.1002/0471777447.ch2

Kešner, A., Chotěborský, R., Linda, M., Hromasová, M., Katinas, E., & Sutanto, H. (2021). Stress Distribution on a Soil Tillage Machine Frame Segment with a Chisel Shank Simulated Using Discrete Element and Finite Element Methods and Validate by Experiment. Biosystems Engineering, 209, 125–138. doi:https://doi.org/10.1016/j.biosystemseng.2021.06.012

Kubasad, P. R. (2018). Numerical Analysis for a Bicycle Frame Made of Mild Steel and Composite. International Journal for Research Trends and Innovation, 3(4), 40–46. Retrieved from https://ijrti.org/papers/IJRTI1804008.pdf

Lai, Q., Yu, Q., & Dong, J. (2019). Dynamic Analysis of Rotary Tiller Gearbox Based on EDEM, ADAMS and ANSYS. Journal of Intelligent and Fuzzy Systems, 36(2), 1153–1160. doi:https://doi.org/10.3233/JIFS-169889

Lu, S., Jin, H., He, M., & Xu, Z. (2019). Analysis System of Power Tiller’s General Machine Components Based on VB and ANSYS. Journal of Physics: Conference Series, 1237(4), 1-6. doi:https://doi.org/10.1088/1742-6596/1237/4/042054

Nejadian, H. A., Karparvarfard, S. H., Boldaji, M. N., & Koushkaki, H. R. (2019). Combined Finite Element and Statistical Models for Predicting Force Components on a Cylindrical Mouldboard Plough. Biosystems Engineering, 186, 168-181. doi:https://doi.org/10.1016/j.biosystemseng.2019.07.007

Oktaviandri, K & Paramasivam, D. K. A. V., (2020). Design and Fabrication of Customized Ais Kacang Vending Machine. Indonesian Journal of Computing, Engineering, and Design, 2(1). 24-31. doi:https://doi.org/10/35806/ijocedv2i1.100

Popa, M., Ștefan, I. S., Nicoleta, B., & Ipate, G. (2021). FEM Model for the Study of Agricultural Soil Compaction under the Action of Two-Wheel Tractor. INTERNATIONAL SCIENTIFIC JOURNAL "MECHANIZATION IN AGRICULTURE & CONSERVING OF THE RESOURCES, 40(1), 38-40.

Pranoto, S. H., & Mahardika, M. (2018). Design and Finite Element Analysis of Micro Punch CNC Machine Modeling for Medical Devices. AIP Conference Proceedings 1941(March). doi:https://doi.org/10.1063/1.5028079

Prasetiyo, A. B., Azmi, A. A., Pamuji, D. S., & Yaqin, R. (2019). Pengaruh Perbedaan Mesh Terstruktur Dan Mesh Tidak Terstruktur Pada Simulasi Sistem Pendinginan Mold Injeksi Produk Plastik. Prosiding Nasional Rekayasa Teknologi Industri Dan Informasi XIV Tahun 2019 (ReTII) 2019 (November), 400-406.

Prasetiyo, A. B., Sekarjati, K. A., Pranoto, S. H., Sutrisna. (2022) Design and Analysis of The Effect of Variation of Compression Force on Allen Key Using Finite Element Analysis Method. SJME Kinematika, 7(1). 39-52. doi: https://doi.org/10.20527/sjmekinematika.v7i.

Pratama, J., & Mahardika, M. (2018). Finite Element Analysis to Determine the Stress Distribution, Displacement and Safety Factor on a Microplate for the Fractured Jaw Case. AIP Conference Proceedings 1941, 1–7. doi:https://doi.org/10.1063/1.5028080

Soden, P. D., Adeyefa, B. A., Wong, Y. S., & Millar, M. A. (1986). Loads, Stresses, and Deflections in Bicycle Frames. The Journal of Strain Analysis for Engineering Design, 21(4), 185–195. doi:https://doi.org/10.1243/03093247V214185

Sosnowski, M., Krzywanski, J., & Scurek, R. (2019). A Fuzzy Logic Approach for the Reduction of Mesh-Induced Error in CFD Analysis: A Case Study of an Impinging Jet. Entropy, 21(11). doi:https://doi.org/10.3390/e21111047

Sosnowski, M., Krzywanski, J., Grabowska, K., & Gnatowska, R. (2018). Polyhedral Meshing in Numerical Analysis of Conjugate Heat Transfer. EPJ Web of Conferences 180 (March 2019), 02096. doi:https://doi.org/10.1051/epjconf/201818002096

Sosnowski, M., (2018). The Influence of Computational Domain Discretization on CFD Results Concerning Aerodynamics of Vehicle. Journal of Applied Mathematics and Computational Mechanics, 17(1), 79-88, doi:10.17512/jamcm2018.1.08.

Stolarski, T., Nakasone, T., & Yoshimoto, S. (2006). Engineering Analysis With Ansys Software. Nuevos Sistemas de Comunicación e Información.

Suprapto, R. K., & Wibawa, L. A. (2021). Desain dan Analisis Tegangan Rangka Alat Simulasi Pergerakan Kendali Terbang Menggunakan Metode Elemen Hingga. Jurnal Teknik Mesin ITI, 5(1), 19-28. doi:10.31543/jtm.v5i1.559

Upendar, K., Dash, R., Behera, D., & Goel, A. (2018). Ergonomical Evaluation of Power Weeder in Wetland Paddy Condition. International Journal of Current Microbiology and Applied Sciences, 7(11), 855–862. doi:https://doi.org/10.20546/ijcmas.2018.711.101

Vegad, G. M., & Yadav, R. (2018). Design Analysis and Optimization of Rotary Tiller Blades Using Computer Software. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 49(1), 43–49. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20183168236

Wang, X., Shi, Q., Fan, W., Wang, R., & Wang, L. (2019). Comparison of the Reliability-Based and Safety Factor Methods for Structural Design. Applied Mathematical Modelling, 72, 68–84. doi:https://doi.org/10.1016/j.apm.2019.03.018

Wibawa, L. A., Diharjo, K., Raharjo, W. W., & Jihad, B. H. (2020). Stress Analysis of Thick-Walled Cylinder for Rocket Motor Case under Internal Pressure. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 106–115. doi:https://doi.org/10.37934/ARFMTS.70.2.106115

Yin, Z., & Xu, L. (2018). Finite Element Analysis and Optimization Design of Paper Cutter Cutting Blade Based on ANSYS. Proceedings - 2018 International Conference on Robots and Intelligent System, 475–478. doi:https://doi.org/10.1109/ICRIS.2018.00125
Published
2022-10-03
How to Cite
PRASETIYO, Angger Bagus; SEKARJATI, Kartinasari Ayuhikmatin. Finite Element Simulation of Power Weeder Machine Frame. Indonesian Journal of Computing, Engineering and Design (IJoCED), [S.l.], v. 4, n. 2, p. 25-34, oct. 2022. ISSN 2656-8179. Available at: <https://ojs.sampoernauniversity.ac.id/index.php/IJOCED/article/view/291>. Date accessed: 06 feb. 2023. doi: https://doi.org/10.35806/ijoced.v4i2.291.
Section
Articles