Methods to Increase Microalgae Carbohydrates for Bioethanol Production

Authors

  • Esam Abu Baker Ali School of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
  • Muhammad Idris Engineering Development of Power Generation and New Renewable Energy, Engineering and Technology Division, PT PLN (Persero), Jakarta, Indonesia
  • Irianto Irianto Department General Education, Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
  • Muhammad Zulkarnain Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
  • Syah Alam Department of Electrical Enginnering, Universitas Trisakti, West Jakarta, Indonesia
  • Ayu Amanah Faculty of Engineering, Universitas Bung Karno, Jakarta, Indonesia
  • La Ode Muhammad Firman Center of Excellence in New and Renewable Energy, Faculty of Engineering, University of Pancasila, Jakarta, Indonesia
  • Donny Mustika Engineering Development of Power Generation and New Renewable Energy, Engineering and Technology Division, PT PLN (Persero), Jakarta, Indonesia

DOI:

https://doi.org/10.35806/ijoced.v4i2.301

Keywords:

Biodiesel, Bioethanol, Carbohydrates, Microalgae, Nutrient

Abstract

Compared to traditional lignocellulose biomass, microalgae contain little or no lignin. Traditionally, bioethanol production from microalgae undergoes three major steps: (i) pretreatment; (ii) polysaccharides hydrolysis into simple sugars; and (iii) sugar conversion into bioethanol by fermentation. Microalgae convert sunlight, water, and CO2 into algal biomass. Diatoms, green algae, bluegreen algae, and golden algae are four main classes of microalgae, whereas the two main species of algae are filamentous and phytoplankton algae. Microalgae convert solar energy efficiently, producing an enormous number of various metabolites. Many studies have been conducted to convert microalgae into various biofuels, such as biodiesel, bioethanol, biohydrogen, and biogas. However, compared to biodiesel, bioethanol production from algae through
fermentation consumes less energy with its simplified process. Considering these advantages, a number of potential applications for microalgae have been proposed and developed. Despite the promising of bioethanol from microalgae, it still has a number of obstacles, such as the low fermentable carbohydrate content of microalgae. This article intends to discuss the methods to increase microalgae carbohydrates thoroughly. To solve this problem, several nutritional starvations/limitations, like nitrogen and phosphorous starvation, are currently being considered in this paper.

References

Andreeva, A., E. Budenkova, O. Babich, S. Sukhikh, V. Dolganyuk, P. Michaud and S. Ivanova (2021). "Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content." Marine Drugs 19(7): 381.

Barsanti, L. and P. Gualtieri (2018). "Is exploitation of microalgae economically and energetically sustainable?" Algal Research 31: 107-115.

Bharathiraja, B., J. Iyyappan, M. Gopinath, J. Jayamuthunagai and R. PraveenKumar (2022). "Transgenicism in algae: Challenges in compatibility, global scenario and future prospects for next generation biofuel production." Renewable and Sustainable Energy Reviews 154: 111829.

Bhuyar, P., M.-Y. Shen, M. Trejo, Y. Unpaprom and R. Ramaraj (2022). "Improvement of fermentable sugar for enhanced bioethanol production from Amorphophallus spp. tuber obtained from northern Thailand." Environment, Development and Sustainability 24(6): 8351-8362.

Brown, L. M. (1993). Biodiesel from microalgae: complementarity in a fuel development strategy, National Renewable Energy Lab.(NREL), Golden, CO (United States).

Capodaglio, A. G. and S. Bolognesi (2018). "Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy." Advances in Eco-Fuels for a Sustainable Environment: 15.

Capodaglio, A. G. and S. Bolognesi (2019). Ecofuel feedstocks and their prospects. Advances in eco-fuels for a sustainable environment, Elsevier: 15-51.

Cea-Barcia, G., G. Buitrón, G. Moreno and G. Kumar (2014). "A cost-effective strategy for the bio-prospecting of mixed microalgae with high carbohydrate content: diversity fluctuations in different growth media." Bioresource technology 163: 370-373.

Chew, K. W., K. S. Khoo, H. T. Foo, S. R. Chia, R. Walvekar and S. S. Lim (2021). "Algae utilization and its role in the development of green cities." Chemosphere 268: 129322.

Chowdhury, H., B. Loganathan, I. Mustary, F. Alam and S. M. Mobin (2019). Algae for biofuels: The third generation of feedstock. Second and third generation of feedstocks, Elsevier: 323-344.

Chu, F., J. Cheng, X. Zhang, Q. Ye and J. Zhou (2019). "Enhancing lipid production in microalgae Chlorella PY-ZU1 with phosphorus excess and nitrogen starvation under 15% CO2 in a continuous two-step cultivation process." Chemical Engineering Journal 375: 121912.

Coaldrake, K. (2021). "Early US-Japan collaborations in algal biofuels research: Continuities and perspectives." Algal Research 60: 102527.

De Bhowmick, G., A. K. Sarmah and R. Sen (2019). "Performance evaluation of an outdoor algal biorefinery for sustainable production of biomass, lipid and lutein valorizing flue-gas carbon dioxide and wastewater cocktail." Bioresource technology 283: 198-206.

Debnath, C., T. K. Bandyopadhyay, B. Bhunia, U. Mishra, S. Narayanasamy and M. Muthuraj (2021). "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production." Renewable and Sustainable Energy Reviews 150: 111464.

Demirbas, M. F. (2009). "Biorefineries for biofuel upgrading: a critical review." Applied energy 86: S151-S161.

Dragone, G., B. D. Fernandes, A. P. Abreu, A. A. Vicente and J. A. Teixeira (2011). "Nutrient limitation as a strategy for increasing starch accumulation in microalgae." Applied Energy 88(10): 3331-3335.

El-Mekkawi, S. A., S. M. Abdo, F. A. Samhan and G. H. Ali (2019). "Optimization of some fermentation conditions for bioethanol production from microalgae using response surface method." Bulletin of the National Research Centre 43(1): 1-8.

Flammini, A., R. Rauch and C. Miceli (2012). "PhD course in Environmental Sciences and Public Health."

Gao, C., H. Xin, S. Yang, Z. Li, S. Liu, B. Xu, T. Zhang, S. Dutta and Y. Tang (2022). "Trends and performances of the algal biofuel: a bibliometric approach." Journal of Environmental Engineering and Landscape Management 30(2): 284-300.

Halder, P., K. Azad, S. Shah and E. Sarker (2019). Prospects and technological advancement of cellulosic bioethanol ecofuel production. Advances in ecofuel for a sustainable environment, Elsevier: 211-236.

Harun, R., M. K. Danquah and G. M. Forde (2010). "Microalgal biomass as a fermentation feedstock for bioethanol production." Journal of Chemical Technology & Biotechnology 85(2): 199-203.

Hoang, T.-D. and N. Nghiem (2021). "Recent developments and current status of commercial production of fuel ethanol." Fermentation 7(4): 314.

Hossain, N., J. Zaini and T. M. I. Mahlia (2019). "Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country." Renewable and Sustainable Energy Reviews 115: 109371.

Hsieh, C.-H. and W.-T. Wu (2009). "Cultivation of microalgae for oil production with a cultivation strategy of urea limitation." Bioresource Technology 100(17): 3921-3926.

Ihara, I., R. Zhao, A. H. Pandyaswargo and H. Onoda (2020). "Evaluating the Effectiveness of Japan’s Climate Change Mitigation and Clean Technology Development Policies." Indonesian Journal of Computing, Engineering and Design (IJoCED)(1): 1-12:V 12.

Jacob, A., B. Ashok, A. Alagumalai, O. H. Chyuan and P. T. K. Le (2021). "Critical review on third generation micro algae biodiesel production and its feasibility as future bioenergy for IC engine applications." Energy Conversion and Management 228: 113655.

Khan, S., M. Naushad, J. Iqbal, C. Bathula and G. Sharma (2022). "Production and harvesting of microalgae and an efficient operational approach to biofuel production for a sustainable environment." Fuel 311: 122543.

Khatoon, N. and R. Pal (2015). Microalgae in biotechnological application: a commercial approach. Plant biology and biotechnology, Springer: 27-47.

Liu, M., Z. Yu, L. Jiang, Q. Hou, Z. Xie, M. Ma, S. Yu and H. Pei (2021). "Monosodium glutamate wastewater assisted seawater to increase lipid productivity in single-celled algae." Renewable Energy 179: 1793-1802.

Loiter, J. M. and V. Norberg-Bohm (1999). "Technology policy and renewable energy: public roles in the development of new energy technologies." Energy Policy 27(2): 85-97.

Markou, G., I. Chatzipavlidis and D. Georgakakis (2012). "Carbohydrates Production and Bioflocculation Characteristics in Cultures of Arthrospira (Spirulina) platensis: Improvements Through Phosphorus Limitation Process." BioEnergy Research 5(4): 915-925.

Markou, G. and E. Nerantzis (2013). "Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions." Biotechnology Advances 31(8): 1532-1542.

Markou, G., D. Vandamme and K. Muylaert (2014). "Microalgal and cyanobacterial cultivation: The supply of nutrients." Water Research 65: 186-202.

Mata, T. M., A. A. Martins and N. S. Caetano (2010). "Microalgae for biodiesel production and other applications: a review." Renewable and sustainable energy reviews 14(1): 217-232.

Milano, J., H. C. Ong, H. H. Masjuki, W. T. Chong, M. K. Lam, P. K. Loh and V. Vellayan (2016). "Microalgae biofuels as an alternative to fossil fuel for power generation." Renewable and Sustainable Energy Reviews 58: 180-197.

Miranda, C., D. Lima, G. Atella, P. Aguiar and S. Azevedo (2016). "Optimization of Nitrogen, Phosphorus and Salt for Lipid Accumulation of Microalgae: Towards the Viability of Microalgae Biodiesel." Natural Science 08: 557-573.

Mohammed, A. T., M. N. M. Jaafar, N. Othman, I. Veza, B. Mohammed, F. A. Oshadumi and H. Y. Sanda (2021). "Soil fertility enrichment potential of Jatropha curcas for sustainable agricultural production: A case study of Birnin Kebbi, Nigeria." Annals of the Romanian Society for Cell Biology: 21061-21073.

Mohd Apandi, N., M. S. Muhamad, R. M. S. Radin Mohamed, N. Mohamed Sunar, A. Al-Gheethi, P. Gani and F. A. Rahman (2021). "Optimizing of Microalgae Scenedesmus sp. Biomass Production in Wet Market Wastewater Using Response Surface Methodology." Sustainability 13(4): 2216.

Muñoz, R. and B. Guieysse (2006). "Algal–bacterial processes for the treatment of hazardous contaminants: A review." Water Research 40(15): 2799-2815.

Nunes, N. S. P., M. Ansilago, N. N. de Oliveira, R. S. R. Leite, M. F. da Paz and G. G. Fonseca (2021). Biofuel production. Microalgae, Elsevier: 145-171.

Paskuliakova, A., T. McGowan, S. Tonry and N. Touzet (2018). "Microalgal bioremediation of nitrogenous compounds in landfill leachate–The importance of micronutrient balance in the treatment of leachates of variable composition." Algal research 32: 162-171.

Procházková, G., I. Brányiková, V. Zachleder and T. Brányik (2014). "Effect of nutrient supply status on biomass composition of eukaryotic green microalgae." Journal of applied phycology 26(3): 1359-1377.

Rahaju, S. M. N., I. Veza, N. Tamaldin, A. Sule, A. C. Opia, M. B. Abdulrahman and D. W. Djamari (2022). "Acetone-Butanol-Ethanol as the Next Green Biofuel-A Review." Automotive Experiences 5(3): 251-260.

Reyimu, Z. and D. Özçimen (2017). "Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production." Journal of Cleaner Production 150: 40-46.

Roslan, M. F., I. Veza and M. F. M. Said (2020). Predictive simulation of single cylinder n-butanol HCCI engine. IOP Conference Series: Materials Science and Engineering, IOP Publishing.

Rusli, M., M. F. M. Said, A. Sulaiman, M. Roslan, I. Veza, M. M. Perang, H. Lau and N. Abd Wafti (2021). Performance and emission measurement of a single cylinder diesel engine fueled with palm oil biodiesel fuel blends. IOP Conference Series: Materials Science and Engineering, IOP Publishing.

Salama, E.-S., M. B. Kurade, R. A. I. Abou-Shanab, M. M. El-Dalatony, I.-S. Yang, B. Min and B.-H. Jeon (2017). "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation." Renewable and Sustainable Energy Reviews 79: 1189-1211.

Samiee-Zafarghandi, R., J. Karimi-Sabet, M. A. Abdoli and A. Karbassi (2018). "Increasing microalgal carbohydrate content for hydrothermal gasification purposes." Renewable Energy 116: 710-719.

Sanderson, P. J. (2018). Evaluation of biomass from the halotolerant microalga Dunaliella salina as an animal feed additive with immune-modulatory activity, University of Greenwich.

Sarwer, A., S. M. Hamed, A. I. Osman, F. Jamil, A. a. H. Al-Muhtaseb, N. S. Alhajeri and D. W. Rooney (2022). "Algal biomass valorization for biofuel production and carbon sequestration: a review." Environmental Chemistry Letters: 1-55.

Siddiki, S. Y. A., M. Mofijur, P. S. Kumar, S. F. Ahmed, A. Inayat, F. Kusumo, I. A. Badruddin, T. Y. Khan, L. Nghiem and H. C. Ong (2022). "Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept." Fuel 307: 121782.

Spolaore, P., C. Joannis-Cassan, E. Duran and A. Isambert (2006). "Commercial applications of microalgae." Journal of bioscience and bioengineering 101(2): 87-96.

Srivastava, R. K., N. P. Shetti, K. R. Reddy and T. M. Aminabhavi (2020). "Biofuels, biodiesel and biohydrogen production using bioprocesses. A review." Environmental Chemistry Letters 18(4): 1049-1072.

Sule, A., Z. A. Latiff, M. A. Abbas, I. Veza and A. C. Opia (2022). "Recent Advances in Diesel-Biodiesel Blended with Nano-Additive as Fuel in Diesel Engines: A Detailed Review." Automotive Experiences 5(2): 182-216.

Suparmaniam, U., M. K. Lam, Y. Uemura, J. W. Lim, K. T. Lee and S. H. Shuit (2019). "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review." Renewable and Sustainable Energy Reviews 115: 109361.

Tazi, K., L. Jamai, L. Seddouk, M. Ettayebi, A.-M. Mohammed, L. Aleya and A. J. Idrissi (2022). "Improving carbohydrate accumulation in Chlamydomonas debaryana induced by sulfur starvation using response surface methodology." Environmental Science and Pollution Research 29(16): 23949-23962.

Thanigaivel, S., A. Priya, K. Dutta, S. Rajendran and Y. Vasseghian (2022). "Engineering strategies and opportunities of next generation biofuel from microalgae: A perspective review on the potential bioenergy feedstock." Fuel 312: 122827.

Tse, T. J., D. J. Wiens, F. Chicilo, S. K. Purdy and M. J. Reaney (2021). "Value-Added Products from Ethanol Fermentation—A Review." Fermentation 7(4): 267.

Udayan, A., N. Sreekumar and M. Arumugam (2022). "Statistical optimization and formulation of microalga cultivation medium for improved omega 3 fatty acid production." Systems Microbiology and Biomanufacturing 2(2): 369-379.

Uggetti, E., B. Sialve, E. Trably and J. P. Steyer (2014). "Integrating microalgae production with anaerobic digestion: a biorefinery approach." Biofuels, Bioproducts and Biorefining 8(4): 516-529.

Vairaprakash, P. and A. Arumugam (2022). "Sustainability, Commercialization, and Future Prospects of Biodiesel Production." Biodiesel Production: Feedstocks, Catalysts, and Technologies: 355-376.

Vassilev, S. V. and C. G. Vassileva (2016). "Composition, properties and challenges of algae biomass for biofuel application: An overview." Fuel 181: 1-33.

Veza, I., D. W. Djamari, N. Hamzah, N. Tamaldin, M. Mairizal, H. Handi, Y. Yusrizal and R. Usman (2022). "Lessons from Brazil: Opportunities of Bioethanol Biofuel in Indonesia." Indonesian Journal of Computing, Engineering and Design (IJoCED) 4(1): 8-16.

Veza, I., V. Muhammad, R. Oktavian, D. W. Djamari and M. F. M. Said (2021). "Effect of COVID-19 on biodiesel industry: A case study in Indonesia and Malaysia." International Journal of Automotive and Mechanical Engineering 18(2): 8637-8646.

Veza, I., M. F. Roslan, M. F. M. Said, Z. A. Latiff and M. A. Abas (2020). "Cetane index prediction of ABE-diesel blends using empirical and artificial neural network models." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: 1-18.

Veza, I., M. F. Roslan, M. F. M. Said, Z. A. Latiff and M. A. Abas (2021). "Physico-chemical properties of Acetone-Butanol-Ethanol (ABE)-diesel blends: Blending strategies and mathematical correlations." Fuel 286: 119467.

Veza, I., M. F. M. Said and Z. A. Latiff (2019). "Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review." Fuel Processing Technology 196: 106179.

Veza, I., M. F. M. Said and Z. A. Latiff (2020). "Improved performance, combustion and emissions of SI engine fuelled with butanol: A review." International Journal of Automotive and Mechanical Engineering 17(1): 7648-7666.

Veza, I., M. F. M. Said and Z. A. Latiff (2021). "Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation." Biomass and Bioenergy 144: 105919.

Veza, I., M. F. M. Said, Z. A. Latiff and M. A. Abas (2021). "Application of Elman and Cascade neural network (ENN and CNN) in comparison with adaptive neuro fuzzy inference system (ANFIS) to predict key fuel properties of ABE-diesel blends." International Journal of Green Energy: 1-13.

Vieira Salla, A. C., A. C. Margarites, F. I. Seibel, L. C. Holz, V. B. Brião, T. E. Bertolin, L. M. Colla and J. A. V. Costa (2016). "Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate." Bioresource Technology 209: 133-141.

Wang, B., Y. Li, N. Wu and C. Q. Lan (2008). "CO2 bio-mitigation using microalgae." Applied microbiology and biotechnology 79(5): 707-718.

Weissman, J. C., D. M. Tillett and R. Goebel (1989). Design and operation of an outdoor microalgae test facility, Microbial Products, Inc., Vacaville, CA (USA).

Xin, L., H. Hong-ying, G. Ke and S. Ying-xue (2010). "Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp." Bioresource Technology 101(14): 5494-5500.

Xu, H., X. Miao and Q. Wu (2006). "High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters." Journal of biotechnology 126(4): 499-507.

Yadav, G., B. K. Dubey and R. Sen (2020). "A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime." Journal of cleaner production 258: 120703.

Yang, F., W. Xiang, T. Li and L. Long (2018). "Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp." Scientific Reports 8(1): 16420.

Yang, L., J. Chen, S. Qin, M. Zeng, Y. Jiang, L. Hu, P. Xiao, W. Hao, Z. Hu, A. Lei and J. Wang (2018). "Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii." Biotechnology for Biofuels 11(1): 40.

Zarrinmehr, M. J., O. Farhadian, F. P. Heyrati, J. Keramat, E. Koutra, M. Kornaros and E. Daneshvar (2020). "Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana." The Egyptian Journal of Aquatic Research 46(2): 153-158.

Zhu, L. D., Z. H. Li and E. Hiltunen (2016). "Strategies for lipid production improvement in microalgae as a biodiesel feedstock." BioMed research international 2016.

Downloads

Published

2022-10-03

Issue

Section

Articles

How to Cite

Methods to Increase Microalgae Carbohydrates for Bioethanol Production (E. A. B. Ali, M. Idris, I. Irianto, M. Zulkarnain, S. Alam, A. Amanah, L. O. M. Firman, & D. Mustika , Trans.). (2022). Indonesian Journal of Computing, Engineering, and Design (IJoCED), 4(2), 35-50. https://doi.org/10.35806/ijoced.v4i2.301