Electrical Losses in Primary Distribution Networks: Case in Holguin Province
DOI:
https://doi.org/10.35806/ijoced.v5i1.305Keywords:
Demand, Electrical losses, Energy, Loss factor, Primary distributionAbstract
The electrical losses constitute an indicator of the technical state of the electrical networks, which can reach up to 70% of the total losses that occur in an electrical circuit. In this work, the calculation of the technical losses in 140 electrical distribution networks was carried out in the school belonging to the Holguín province in Cuba. The statistical calculation is performed in order to understand the electrical losses in primary distribution networks of the Holguín province. The method used by Empresa Eléctrica Holguín was acquired for power losses, which considered the number of customers, the maximum demand, and the length belonging to the circuit under study. The Buller equation was used to calculate energy losses, which relates the load and loss factors utilizing a coefficient obtained by statistical considerations. The most affected municipalities were Sagua de Tánamo, Calixto García, and Cacocún, whose losses represented 45% of the total losses. On the other hand, the characteristic coefficient for local primary distribution networks was 0.27.
References
Domenech, R. J. (2018). La incertidumbre de la “significación” estadística. Rev Med Chile, 146, 1184-1189.
Duan, J., Wang, F., Song, W., & Fang, S. (2022). Losses Calculation in distribution networks considering the influence of power quality. 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), 3700-3705.
Farshchian, G., Avakh, S. D., & Hamidi, N. (2021). Developing a decision-making dashboard for power losses attributes of Iran’s electricity distribution network. Energy, 216(119248).
Fraga, I. H., Gómez, J. R., Viego, P. R., Sousa, V. S., & Quispe, E. C. (2021). The smart grid concept applied to an industrial electrical system. International Journal of Power Electronics and Drive Systems, 12(4), 2140-2150.
Gayibov, T., Reymov, K., & Aytbaev, A. (2021). Mathematical model of the problem of accounting for losses in electrical networks when optimizing the loads of electrical consumers. E3S Web of Conferences , 289(07024), 1-3.
Gomez Febles, R. F., Cervantes, J. O., Calas, D. C., & Torres, O. E. (2021). Márgenes de Potencia Activa y Reactiva para la estabilidad te tensión en esquema eléctrico simplificado de la provincia Santiago de Cuba, con la aplicación de las curvas PV y VQ. Cien-cia y Conciencia, 1-7.
Gören, Dindar, B., & Gül, Ö. (2022). Artificial Neural Network based Cost Estimation of Power Losses in Electricity Distribution System. 2022 4th Global Power Energy and Communication Conference (GPECOM), 455-460.
Grau, F., Cervantes, J., Vázquez, L., & Nuñez, J. R. (2020). Effect of LED Technology on Technical Losses in Public Lighting Circuits. A Case Study. Engineering Science and Technology Review, 14(2), 198 - 206.
Greenwood, D., Sarantakos, I., Davison, P., Patsios, C., Ahmad, A., & Black, M. (2019). Enhancing the Understanding of Distribution Network Losses. CIRED 2019 Conference(978), 1-5.
Gulakhmadov, A., Asanova, S., Asanova, D., Safaraliev, M., Tavlintsev, A., Lyukhanov, E., . . . Odinaev, I. (2022). Power Flows and Losses Calculation in Radial Networks by Representing the Network Topology in the Hierarchical Structure Form. Energies, 15(765), 1-13.
Hassan, S. A., Razzaq, A. A., & Al, A. S. (2020). Calculations of Loss Factor Based on Real-Time Data: Determining Technical Power Loss for the Electrical Distribution Network in Karbala City. IOP Conf. Series: Materials Science and Engineering, 671(012037), 1-13.
Komolafe, O. M., & Udofia, K. M. (2020). Review of electrical energy losses Nigeria. Nigerian Journal of Technology, 39(1), 246 – 254.
Laurencio, A. P., Pérez, O. M., & Pérez, I. R. (2022). Evaluation of losses in electrical sub-transmission networks by neural network modeling. DYNA, 89(221), 84-89.
Musaev, T., Khabibullin, M., Kamaliev, R., Fedorov, O., Valeev, I., & Vladimirov, O. (2020). Influence of smart metering systems on increasing the accuracy of calculation electrical power losses in electrical networks. E3S Web Conf., 220(01026), 1-4.
Pérez, D. G., García, F. R., & Hernández, D. E. (2019). DISMINUCIÓN DE LAS PÉRDIDAS DE ENERGÍA ELÉCTRICA POR DISTRIBUCIÓN USANDO UNA TECNOLOGÍA NOVEDOSA DE MEDICIONES Y CONTROL PARA LA TOMA DE DECISIONES. Revista Colombiana de Tecnologías de Avanzada, 2(34), 144-150.
Rahmat, R. M., Salahuddin, Ismail, B., Shrestha, A., & Vijayrao, D. A. (2021). Analysis of Technical Loss Calculation Using Load Curve Approach on 20 kV Distribution Network. Journal of Renewable Energy, Electrical, and Computer Engineering, 1(2), 85-93.
Sangrador, O. C., Arias, M. M., & Páez, O. E. (2020). Inferencia estadística: contraste de hipótesis. Evidencias en Pediatría, 16(11), 1-8.
Tsygulev, N., & Khlebnikov, V. (2019). Specific aspects of forecasting electrical energy losses in electricity networks. Earth and Environmental Science, 403(1), 1-8.
William, W. H., & Douglas, C. M. (1996). Probabilidad y estadística para ingeniería y administración. México: Compañía Editorial Continental.
Zaghwan, A., & Gunawan, I. (2021). Resolving Energy Losses Caused by End-Users in Electrical Grid Systems. Designs, 5(23), 1-25.