A Review on Dynamic Network Using Flexible Active-Mode Period Scheme for Telemedicine
DOI:
https://doi.org/10.35806/ijoced.v5i2.315Keywords:
Controlled mechanism, Dynamic network, Flexible active mode, Network lifetime, TelemedicineAbstract
Challenges associated with transmitter node during the process of intelligent transceiver nodes attempting to be active state after receiving a message outside its time slot schedule which might result in energy depletion through receiver node are the most notable origin of excessive energy consumption in the system. Various methods have been carried out to minimize the overhead cost. In this article, we presented the Dynamic Network using Adaptive Wake-Up Interval Media Access Control (MAC) protocol for Wireless Body Area Networks (WBANs) for telemedicine which could lead to the minimization of the energy consumption in the network and maximization of network lifetime. A Receiver Controlled mechanism balances the number of wake-up periods between Receiver node and Transmitter nodes and estimation of traffic load. This article depicts no earlier examination of dynamic network using Flexible Active-Mode period scheme-based media access control protocol for WBAN. Therefore, this review work could lead to the improvement of dynamic network Flexible Active-Mode –media access control protocols and invigorate a clearer way of finding AWI-Media Access Control protocol problems.
References
Aboalseoud, A., Youssry, A., El-Nozahi, M., El-Rafei, A., ElBialy, A., Ragaai, H., & Wahba, A. (2019). Wireless ECG Monitoring System for Telemedicine Application. 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), 300–305. https://doi.org/10.1109/ICICIS46948.2019.9014845
Adarsh, A., Pathak, S., & Kumar, B. (2021). NDesign and Analysis of a Reliable, Prioritized and Cognitive Radio-Controlled Telemedicine Network Architecture for Internet of Healthcare Thingso Title. International Journal Of Computer Networks And Applications (IJCNA), 8(1), 54–66. https://doi.org/DOI: 10.22247/ijcna/2021/207982
Ahmed, O., Ren, F., Hawbani, A., & Al-Sharabi, Y. (2020). Energy Optimized Congestion Control-Based Temperature Aware Routing Algorithm for Software Defined Wireless Body Area Networks. IEEE Access, 8, 41085–41099. https://doi.org/10.1109/ACCESS.2020.2976819
Alam, M. M., Berder, O., Menard, D., & Sentieys, O. (2012). TAD-MAC: Traffic-Aware Dynamic MAC Protocol for Wireless Body Area Sensor Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 109–119. https://doi.org/10.1109/JETCAS.2012.2187243
Bachir, A., Dohler, M., Watteyne, T., & Leung, K. K. (2010). MAC Essentials for Wireless Sensor NetworksTitle. IEEE Communications Surveys & Tutorials, 12(2), 222–248. https://doi.org/https://doi.org/10.1109/SURV.2010.020510.00058
Boukerche, A., & Ren, Y. (2009). A secure mobile healthcare system using trust-based multicast scheme. IEEE Journal on Selected Areas in Communications, 27(4), 387–399. https://doi.org/10.1109/JSAC.2009.090504
Chakraborty, C., Gupta, B., & Ghosh, S. K. (2013). A review on telemedicine-based WBAN framework for patient monitoring. Telemed J E Health, 19(8), 619–626. https://doi.org/10.1089/tmj.2012.0215
Cho, N., Bae, J., & Yoo, H. J. (2009). A 10.8 mW body channel communication/ MICS dual-band transceiver for a unified body sensor MICS dual-band transceiver for a unified body sensor network controller. IEEE J. Solid-State Circuits, 44(12), 3459–3468.
Dabiri, F., Massey, T., Noshadi, H., Hagopian, H., Lin, C. K., Tan, R., Schmidt, J., & Sarrafzadeh, M. (2009). A Telehealth Architecture for Networked Embedded Systems: A Case Study in In Vivo Health Monitoring. IEEE Transactions on Information Technology in Biomedicine, 13(3), 351–359. https://doi.org/10.1109/TITB.2009.2013248
Davies, B., Kenia, P., Nagakumar, P., & Gupta, A. (2021). Paediatric and Adolescent Asthma: A Narrative Review of Telemedicine and Emerging Technologies for the Post COVID-19 Era. Journal of the British Society for Allergy and Clinical Immunology, 51(3). https://doi.org/10.1111/cea.13836
Diong, B. W., Goh, M. I., Chung, S. K., Chekima, A., & Yew, H. T. (2021). Vertical Handover Algorithm for Telemedicine Application in 5G Heterogeneous Wireless Networks. International Journal of Advanced Computer Science and Applications(IJACSA), 12(8). https://doi.org/http://dx.doi.org/10.14569/IJACSA.2021.0120872
Dong, C., & Yu, F. (2017). A prediction-based asynchronous MAC protocol for heavy traffic load in wireless sensor networks. International Journal of Electronics and Communications, 82, 241–250. https://doi.org/https://doi.org/10.1016/j.aeue.2017.09.003
Fang, G., & Dutkiewicz, E. (2009). BodyMAC: Energy efficient TDMA-based MAC protocol for Wireless Body Area Networks. 2009 9th International Symposium on Communications and Information Technology, 1455–1459. https://doi.org/10.1109/ISCIT.2009.5341045
Garai, Á., Péntek, I., & Adamkó, A. (2019). Revolutionizing Healthcare with IoT and Cognitive, Cloud-based Telemedicine. Acta Polytechnica Hungarica, 16(2), 163–181.
Gonzalez-Valenzuela, S., Chen, M., & Leung., V. C. M. (2011). Mobility support for health monitoring at home using wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 15(4), 539–549.
Hossain, M. U., Dilruba, Kalyan, M., Rana, M. R., & Rahman, M. O. (2014). Multi-dimensional traffic adaptive energy-efficient MAC protocol for Wireless Body Area Networks. 2014 9th International Forum on Strategic Technology (IFOST), 161–165. https://doi.org/10.1109/IFOST.2014.6991095
Iyobhebhe, M., Adikpe, A., Bashayi, J. G., Akezi, A. C., Botson, I. C., Chukwudi, E., & Akinyele, O. B. (2022). A Review on Dynamic Buffer Traffic Condition Protocol in Telemedicine. Indonesian Journal of Computing, Engineering and Design (IJoCED), 4(2), 15–24. https://doi.org/https://doi.org/10.35806/ijoced.v4i2.247
Iyobhebhe, M., Yaro, A. S., Bello, H., Agbon, E. E., Al-Mustapha, M. D., & Kabir, M. T. (2022). Enhancing Throughput Cluster-Based WBAN Using TDMA and CCA Scheme. Pakistan Journal of Engineering and Technology, 5(3), 7–12. https://doi.org/https://doi.org/10.51846/vol5iss3pp7-12
Javan, A. A. K., Jafari, M., Shoeibi, A., & Zare, A. (2021). Medical Images Encryption Based on Adaptive-Robust Multi-Mode Synchronization of Chen Hyper-Chaotic Systems. Sensors, 21(11), 3925. https://doi.org/http://dx.doi.org/10.3390/s21113925
Lu, W., & Zhai, Y. (2022). Self-Adaptive Telemedicine specialist Recommendation considering specialist Activity and patient feedback. International Journal of Environmental Research and Public Health, 19(9).
Marinkoic, S. J., Popovici, E. M., Spagnol, C., Faul, S., & Marnane, W. P. (2009). Energy-efficient low-duty cycle MAC protocol for wireless body area networks. IEEE Transaction on Information Technology in Biomedicine, 13(6), 915 – 925.
Monowar, M. M., Hassan, M. M., Bajaber, F., Al-Hussein, M., & Alamri, A. (2012). McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks. Body Sensor Networks for Healthcare and Pervasive Applications, 12(11), 15599–15627. https://doi.org/https://doi.org/10.3390/s121115599
Musaloiu-E, R., Liang, C.-J. M., & Terzis, A. (2008). Koala: Ultra-Low Power Data Retrieval in Wireless Sensor Networks. Proceedings of the 2008 International Conference on Information Processing in Sensor Networks, 421–432.
Napi, N. M., Zaidan, A. A., Bahaa, B., & Albahri, O. s. (2019). Medical emergency triage and patient prioritisation in a telemedicine environment: a systematic review. Health and Technolgy, 9. https://doi.org/10.1007/s12553-019-00357-w
Omeni, O., Wong, A. C. W., Burdett, A. J., & Toumazou, C. (2008). Energy efficient medium access protocol for wireless medical body area sensor networks. IEEE Transactions on Biomedical Circuits System, 2(4), 251–259.
Omuya, O. S. A., & Tayo, A. O. (2022). Analytical Framework to Minimize the latency in Tele-herbal healthcare services. Analytical Framework to Minimize the Latency in Tele-Herbal Healthcare Services.
Park, I., Yi, J., & Lee, H. (2015). A receiver-initiated MAC protocol for wireless sensor networks based on tree topology. International Journal of Distributed Sensor Networks. https://doi.org/https://doi.org/10.1155/2015/950656
Pramanik, P. K. D., Nayyar, A., & Pareek, G. (2019). WBAN: Driving e-healthcare Beyond Telemedicine to remote health monitoring. Telemedicine Technologies, 89–119. https://doi.org/10.1016/b978-0-12-816948-3
Qu, Y., Zheng, G., Ma, H., & Wang, X. (2019). A survey of routing protocols in WBANs for Healthcare Applications. Sensors, 19(7). https://doi.org/10.3390/S19071636
Rahman, M. O., Hong, C. S., Lee, S., & Bang, Y.-C. (2011). ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks. Sensors, 11(12), 11560–11580. https://doi.org/https://doi.org/10.3390/s111211560
Sun, Y., Gurewitz, O., & Johnson, D. B. (2008). RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. Conference: Proceedings of the 6th International Conference on Embedded Networked Sensor Systems. https://doi.org/10.1145/1460412.1460414
Sweeney, R. F. M. (2011). Energy efficient link-layer coding and compression for wireless body area network. Department of Electrical Engineering.
Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2011). PW-MAC: An energy-efficient predictive-wakeup MAC protocol for wireless sensor networks. In Proceedings of the INFOCOM IEEE, 10–15.
Ullah, S., & Kwak, K. S. (2010). Performance study of low-power MAC protocols for wireless body area networks. IEEE 21st International Symposium Personal, 112–116.
Yew, H. T., Supriyanto, E., Satria, M. H., & Hau, Y. W. (2016). Adaptive network selection mechanism for telecardiology system in developing countries. IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 95–97. https://doi.org/10.1109/BHI.2016.7455843
Yoo, J., Yan, L., Lee, S., & Kim, Y. (2009). A 5.2mW self-configured wearable body sensor network controller and a 12µW 54.9% efficiency wirelessly powered sensor for continuous health monitoring system. Conference: Solid-State Circuits Conference, 291a, 290–291. https://doi.org/10.1109/ISSCC.2009.4977422
Yoon, S., Ahn, G. ., Joo, S. S., & Lee., M. . (2010). PNP-MAC: preemptive slot allocation and non-preemptive transmission for providing QoS in body area networks. Proceedings of the 7th IEEE Consumer Communications and Network Conference (CCNC’10).
Yuce, M. R. (2010). Implementation of wireless body area networks for healthcare systems. Sensors and Actuators A: Physical, 162(1), 116–129. https://doi.org/https://doi.org/10.1016/j.sna.2010.06.004
Zhai, Y., Jinghong, Chen, B., Shi, J., Wang, L., He, X., Sun, D., Chen, H., Hou, H., Song, X., & Zhao, J. (2020). Design and Application of a Telemedicine system jointly Driven by videoconferencing and Data Exchange: Practical Experience from Henan province, China. Telemedicine and E-Health, 2(1).