An Automatic Monitoring System for Dragon Fruit Using Convolutional Neural Networks (CNN) and Internet of Things (IoT)

Authors

  • Adi Mulyadi Electrical Engineering Department, Faculty of Engineering, PGRI Banyuwangi University
  • Fuad Ardiyansyah Biology Department, Faculty of Mathematics and Natural Science, PGRI Banyuwangi University
  • Charis Fathul Hadi Electrical Engineering Department, Faculty of Engineering, PGRI Banyuwangi University

DOI:

https://doi.org/10.35806/ijoced.v6i1.391

Keywords:

Dragon fruit, Convolutional neural network, Internet of things, Classification, Monitoring

Abstract

Plant diseases and pests have led to a decline in the quality of dragon fruit produced in Banyuwangi regency, Indonesia. Infections in dragon fruit cause rot, and farmers struggle to identify the pests responsible. To address this problem, this work proposed two concepts for the classification and monitoring systems of dragon fruit. The classification was done by processing some images of dragon fruits captured by DLSR camera and utilizes a convolutional neural network with three layers for training and testing. The monitoring system is based on the Internet of Things to tracks the status of ripe, raw, and rotten fruits. The application of the dragon fruit classification system to ripe, rotten, and raw fruits has yielded results that increase fold accuracy by 0.976, 0.981, and 0.986, respectively, with 200 training data in each of the three training and testing phases. There is a decrease of 0.024, 0.019, and 0.014 in fold loss accuracy. Meanwhile, the monitoring system's platform integrates the classification of dragon fruit to monitor the condition of ripe, raw, and rotting fruit in real time. With the implementation of the classification and monitoring system, farmers will be better equipped to predict when dragon fruit will ripen and prevent the spread of rot to other fruits.

References

Anhar, & Putra, R. A. (2023). Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN). ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 11(2), 466. https://doi.org/10.26760/elkomika.v11i2.466

Aryanta, I. W. R. (2022). Manfaat Buah Naga Untuk Kesehatan. Widya Kesehatan, 4(2), 8–13. https://doi.org/10.32795/widyakesehatan.v4i2.3386

Besari, A. (2019). 24 Jam Belajar Internet of Things (IoT) dengan Raspberry Pi.

Chi, J., Liu, Y., Wang, V., & Yan, J. (2022). Performance Analysis of Three Kinds of Neural Networks in the Classification of Mask Images. Journal of Physics: Conference Series, 2181(1), 1–12. https://doi.org/10.1088/1742-6596/2181/1/012032

Fitri, Z. E., Silvia, M., Madjid, A., Imron, A. M. N., & Sahenda, L. N. (2022). Red Dragon Fruit (Hylocereus costaricensis) Ripeness Color Classification by Naïve Bayes Algorithm. Applied Technology and Computing Science Journal, 5(1), 21–29. https://doi.org/10.33086/atcsj.v5i1.3690

Gampur, G., Ordiyasa, I. W., Kom, S., Depok, K., Sleman, K., & Yogyakarta, D. I. (2022). Klas-ifikasi Jenis Pisang Menggunakan Convolutional Neural Network. Prosiding Seminar Na-sional Teknik Elektro, Informatika & Sistem Informasi (SINTaKS) 2022, 1–5.

Hakim, L., Asyhari, A. R., Kristanto, S. P., Yusuf, D., Prasetyo, J. A., & Siregar, H. M. (2023). Classification of Dragon Fruit Stem Diseases Using Convolutional Neural Network. INTENSIF: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, 7(2), 262–275. https://doi.org/10.29407/intensif.v7i2.20093

Indriyani, N. L. P., & Hardiyanto, N. (2019). Pengaruh Teknik Penyerbukan Terhadap Pem-bentukan Buah Naga (Hylocereus polyrizhus) [The Effect of Pollination Technique to Fruit Development of Dragon Fruit (Hylocereus polyrizhus)]. Jurnal Hortikultura, 28(2), 183. https://doi.org/10.21082/jhort.v28n2.2018.p183-190

Isnanda, A. N., Ani, H. M., & Suyadi, B. (2017). Pengaruh Biaya Usahatani Buah Naga Ter-hadap Keuntungan Para Petani Buah Naga Di Desa Temurejo Kecamatan Bangorejo Kabupaten Banyuwangi. JURNAL PENDIDIKAN EKONOMI: Jurnal Ilmiah Ilmu Pendidikan, Ilmu Ekonomi Dan Ilmu Sosial, 11(1), 22. https://doi.org/10.19184/jpe.v11i1.4993

Khoiri, M. (2020). Data Tahunan Tanaman Pangan Tahun 2017-2019 (Issue 1).

Maier, J., Schlechte, D., & Fernandes, M. (2020). A Deep Learning Approach to Prepare Participants for Negotiations By Recognizing Emotions With Voice Analysis. Local Proceedings of the 20th International Conference on Group Decision and Negotiation, 1–11.

Meganingtyas, W., & Alauhdin, M. (2021). Ekstraksi Antosianin dari Kulit Buah Naga (Hylo-cereus costaricensis) dan Pemanfaatannya sebagai Indikator Alami Titrasi Asam-Basa. AgriTECH, 41(3), 278. https://doi.org/10.22146/agritech.52197

Moreira, G., Magalhães, S. A., Pinho, T., Dos Santos, F. N., & Cunha, M. (2022). Benchmark of Deep Learning and a Proposed HSV Colour Space Models for the Detection and Classification of Greenhouse Tomato. Agronomy, 12(2), 1–23. https://doi.org/10.3390/agronomy12020356

Mulyadi, A., Putra, A. P., & Wardhana, M. G. (2022). Penerapan Panel Surya Pada Lahan Buah Naga di Desa Wringinpitu, Kecamatan Tegaldlimo, Kabupaten Banyuwangi. JATI EMAS (Jurnal Aplikasi Teknik Dan Pengabdian Masyarakat), 6(3), 93. https://doi.org/10.36339/je.v6i3.661

Prakosa, A. B., Hendry, & Tanone, R. (2023). Implementasi Model Deep Learning Convolu-tional Neural Network (CNN) Pada Citra Penyakit Daun Jagung Untuk Klasifikasi Penya-kit Tanaman. Jurnal Pendidikan Teknologi Informasi (JUKANTI), 6(1), 107–116.

Rahaman, M. M., Li, C., Yao, Y., Kulwa, F., Rahman, M. A., Wang, Q., Qi, S., Kong, F., Zhu, X., & Zhao, X. (2020). Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches. Journal of X-Ray Science and Technology, 28(5), 821–839. https://doi.org/10.3233/XST-200715

Ramadhani, R. T., Arrachmah, N., Soemargono, S., & Suprianti, L. (2020). Proses Pembuatan Bioetanol dari Buah Naga Merah. ChemPro, 1(02), 53–57. https://doi.org/10.33005/chempro.v1i2.51

Rohim, A., Sari, Y. A., & Tibyani. (2019). Convolution Neural Network (CNN) Untuk Pengklas-ifikasian Citra Makanan Tradisional. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(7), 7038–7042.

Sustiono, & Pambudi, W. S. (2015). Rancang Bangun Alat Pemilihan Kualitas Kematangan Buah Naga Menggunakan TeknikImage Processing dengan Metode Image Segmenta-tion HSV. Jurnal Sains Dan Informatika, 1(2), 28–37.

Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., & Zou, X. (2020). Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review. Frontiers in Plant Sci-ence, 11(May), 1–17. https://doi.org/10.3389/fpls.2020.00510

Tanuwijaya, E., & Roseanne, A. (2021). Modifikasi Arsitektur VGG16 untuk Klasifikasi Citra Digital Rempah-Rempah Indonesia. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 189–196. https://doi.org/10.30812/matrik.v21i1.1492

Vo, H. T., Thien, N. N., & Mui, K. C. (2023). A Deep Transfer Learning Approach for Accurate Dragon Fruit Ripeness Classification and Visual Explanation using Grad-CAM. Interna-tional Journal of Advanced Computer Science and Applications, 14(11), 1344–1352. https://doi.org/10.14569/IJACSA.2023.01411137

Wang, Walsh, & Koirala. (2019). Mango Fruit Load Estimation Using a Video Based MangoYOLO—Kalman Filter—Hungarian Algorithm Method. Sensors, 19(12), 2742. https://doi.org/10.3390/s19122742

Wen, H., Huang, C., & Guo, S. (2021). The Application of Convolutional Neural Networks (CNNs) to Recognize Defects in 3D-printed Parts. Materials, 14(10), 1–15. https://doi.org/10.3390/ma14102575

Wismadi, I. M., Khrisne, D. C., & Suyadnya, I. M. A. (2020). Detecting the Ripeness of Har-vest-Ready Dragon Fruit using Smaller VGGNet-Like Network. Journal of Electrical, Electronics and Informatics, 3(2), 35. https://doi.org/10.24843/jeei.2019.v03.i02.p01

Wu, L., Zhang, H., Chen, R., & Yi, J. (2020). Fruit Classification Using Convolutional Neural Network via Adjust Parameter and Data Enhancement. 12th International Conference on Advanced Computational Intelligence, ICACI 2020, 294–301. https://doi.org/10.1109/ICACI49185.2020.9177518

Zhou, J., Zhang, Y., & Wang, J. (2023). A Dragon Fruit Picking Detection Method Based on YOLOv7 and PSP-Ellipse. Sensors, 23(8). https://doi.org/10.3390/s23083803

Zhu, X., Shen, D., Wang, R., Zheng, Y., Su, S., & Chen, F. (2022). Maturity Grading and Identification of Camellia oleifera Fruit Based on Unsupervised Image Clustering. Foods, 11(23), 1–18. https://doi.org/10.3390/foods11233800

Downloads

Published

2024-04-01 — Updated on 2024-04-17

Versions

Issue

Section

Articles

How to Cite

An Automatic Monitoring System for Dragon Fruit Using Convolutional Neural Networks (CNN) and Internet of Things (IoT) (A. Mulyadi, F. Ardiyansyah, & C. Fathul Hadi , Trans.). (2024). Indonesian Journal of Computing, Engineering, and Design (IJoCED), 6(1), 30-41. https://doi.org/10.35806/ijoced.v6i1.391 (Original work published 2024)