An FMCW Radar-Based Intelligent System for Non-Contact Detection and Monitoring of Pneumonia Symptoms
DOI:
https://doi.org/10.35806/ijoced.v6i1.395Keywords:
Classification, FMCW radar, MFCC feature extraction, Pneumonia, XGBoostAbstract
Pneumonia is one of the most common contagious respiratory diseases, and one of its symptoms is shortness of breath. This symptom underscores the need for non-contact monitoring methods, which our paper addresses by proposing a strategy that uses Frequency-Modulated Continuous Wave (FMCW) radar to extract breathing waveforms and then classifies them with an eXtreme Gradient Boosting (XGBoost) model. The model performs well on our dataset, using stratified k-fold cross-validation and Mel-Frequency Cepstral Coefficients (MFCC) feature extraction. This intelligent system can correctly identify deep and deep-quick breathing patterns with 98% and 87.5% recall scores, respectively. Integrating FMCW and XGBoost offers a promising solution for early detection and real-time monitoring of pneumonia
References
Alizadeh, M., Shaker, G., Almeida, J. C. M. De, Morita, P. P., & Safavi-Naeini, S. (2019). Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar. IEEE Access, 7, 54958–54968. https://doi.org/10.1109/ACCESS.2019.2912956
Avian, C., Leu, J.-S., Ali, E., Putro, N. A. S., Song, H., Takada, J.-I., Prakosa, S. W., & Purnomo, A. T. (2023). Non-contact Breathing Patterns Recognition with FMCW Radar by Pro-cessing Temporal Information using Transformer Network. 2023 Asia-Pacific Microwave Conference (APMC), 420–422. https://doi.org/10.1109/APMC57107.2023.10439834
de Benedictis, F. M., Kerem, E., Chang, A. B., Colin, A. A., Zar, H. J., & Bush, A. (2020). Complicated Pneumonia in Children. The Lancet, 396(10253), 786–798. https://doi.org/10.1016/S0140-6736(20)31550-6
Htun, T. P., Sun, Y., Chua, H. L., & Pang, J. (2019). Clinical Features for Diagnosis of Pneumonia Among Adults in Primary Care Setting: A Systematic and Meta-review. Scientific Reports, 9(1), 7600. https://doi.org/10.1038/s41598-019-44145-y
Ikeda, A., & Fujimoto, M. (2023). Investigation of Maximum Spacing for Placement of Constraint Points in PCMP. 2023 Asia-Pacific Microwave Conference (APMC), 186–188. https://doi.org/10.1109/APMC57107.2023.10439694
Kamath, R. (2017). IWR1443BOOST: IWR and AWR Chip Choices. Texas Instruments Incorporated. https://e2e.ti.com/support/sensors-group/sensors/f/sensors-forum/641695/iwr1443boost-iwr-and-awr-chip-choices
Kim, S.-H., & Han, G.-T. (2019). 1D CNN Based Human Respiration Pattern Recognition using Ultra Wideband Radar. 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 411–414. https://doi.org/10.1109/ICAIIC.2019.8669000
Le Kernec, J., Fioranelli, F., Ding, C., Zhao, H., Sun, L., Hong, H., Lorandel, J., & Romain, O. (2019). Radar Signal Processing for Sensing in Assisted Living: The Challenges Associated With Real-Time Implementation of Emerging Algorithms. IEEE Signal Processing Magazine, 36(4), 29–41. https://doi.org/10.1109/MSP.2019.2903715
Lee, H., Hong, Y. J., Baik, S., Hyeon, T., & Kim, D. (2018). Enzyme‐Based Glucose Sensor: From Invasive to Wearable Device. Advanced Healthcare Materials, 7(8). https://doi.org/10.1002/adhm.201701150
Lv, W., He, W., Lin, X., & Miao, J. (2021). Non-Contact Monitoring of Human Vital Signs Using FMCW Millimeter Wave Radar in the 120 GHz Band. Sensors, 21(8), 2732. https://doi.org/10.3390/s21082732
Mani, C. S. (2018). Acute Pneumonia and Its Complications. In Principles and Practice of Pediatric Infectious Diseases (pp. 238-249.e4). Elsevier. https://doi.org/10.1016/B978-0-323-40181-4.00034-7
Naranjo-Hernández, D., Talaminos-Barroso, A., Reina-Tosina, J., Roa, L., Barbarov-Rostan, G., Cejudo-Ramos, P., Márquez-Martín, E., & Ortega-Ruiz, F. (2018). Smart Vest for Respiratory Rate Monitoring of COPD Patients Based on Non-Contact Capacitive Sensing. Sensors, 18(7), 2144. https://doi.org/10.3390/s18072144
Purnomo, A. T., Komariah, K. S., Lin, D.-B., Hendria, W. F., Sin, B.-K., & Ahmadi, N. (2022). Non-Contact Supervision of COVID-19 Breathing Behaviour With FMCW Radar and Stacked Ensemble Learning Model in Real-Time. IEEE Transactions on Biomedical Circuits and Systems, 16(4), 664–678. https://doi.org/10.1109/TBCAS.2022.3192359
Rejaibi, E., Komaty, A., Meriaudeau, F., Agrebi, S., & Othmani, A. (2022). MFCC-based Re-current Neural Network for Automatic Clinical Depression Recognition and Assessment from Speech. Biomedical Signal Processing and Control, 71, 103107. https://doi.org/10.1016/j.bspc.2021.103107
Singh, A., Rehman, S. U., Yongchareon, S., & Chong, P. H. J. (2021). Multi-Resident Non-Contact Vital Sign Monitoring Using Radar: A Review. IEEE Sensors Journal, 21(4), 4061–4084. https://doi.org/10.1109/JSEN.2020.3036039
Texas Instruments. (2018, October). IWR1443 Single-Chip 76- to 81-GHz mmWave Sensor. (Publication No. SWRS211C). Texas Instruments Incorportated. https://www.ti.com/lit/ds/symlink/iwr1443.pdf
Texas Instruments. (2020, May). IWR1443BOOST Evaluation Module mmWave Sensing Solution. (Publication No. SWRU518D). Texas Instruments Incorporated. https://www.ti.com/lit/ug/swru518d/swru518d.pdf
Texas Instruments. (2024). IWR1443 Single-chip 76-GHz to 81-GHz mmWave Sensor Integrating MCU and Hardware Accelerator. Texas Instruments Incorporated. https://www.ti.com/product/IWR1443
Wang, Q., Dong, Z., Liu, D., Cao, T., Zhang, M., Liu, R., Zhong, X., & Sun, J. (2021). Frequen-cy-Modulated Continuous Wave Radar Respiratory Pattern Detection Technology Based on Multifeature. Journal of Healthcare Engineering, 2021, 1–18. https://doi.org/10.1155/2021/9376662
Wu, J., Li, Y., & Ma, Y. (2021). Comparison of XGBoost and the Neural Network Model on the Class-balanced Datasets. 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), 457–461. https://doi.org/10.1109/ICFTIC54370.2021.9647373
Yoo, S., Ahmed, S., Kang, S., Hwang, D., Lee, J., Son, J., & Cho, S. H. (2021). Radar Recorded Child Vital Sign Public Dataset and Deep Learning-Based Age Group Classification Framework for Vehicular Application. Sensors, 21(7), 2412. https://doi.org/10.3390/s21072412
Zhang, P., Jia, Y., & Shang, Y. (2022). Research and Application of XGBoost in Imbalanced Data. International Journal of Distributed Sensor Networks, 18(6), 155013292211069. https://doi.org/10.1177/15501329221106935
Zhuang, Z., Wang, F., Yang, X., Zhang, L., Fu, C.-H., Xu, J., Li, C., & Hong, H. (2022). Accurate contactless Sleep Apnea Detection Framework with Signal processing and Machine Learning Methods. Methods, 205, 167–178. https://doi.org/10.1016/j.ymeth.2022.06.013
Downloads
Published
Versions
- 2024-04-17 (2)
- 2024-04-01 (1)