Microhole Creation in FDM-Printed Sheet Polymers: A Punching Process Approach

Authors

  • Urip Agus Salim Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55281, Indonesia
  • Bulan Abdullah School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia
  • Suyitno Department of Mechanical Engineering, Faculty of Engineering, Tidar University, Jl. Kapten Suparman 39, Magelang 56116, Indonesia
  • Juan Pratama Department of Mechanical Engineering, Faculty of Engineering, Darma Persada University, DKI Jakarta, Indonesia
  • Muhammad Imawan Badranaya Department of Mechanical and Automotive Engineering, Faculty of Vocational, Universitas Negeri Yogyakarta, Yogyakarta 5565, Indonesia
  • Rahman Wijaya Department of Mechanical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia
  • Muslim Mahardika Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55281, Indonesia
  • Budi Arifviyanto Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55281, Indonesia

DOI:

https://doi.org/10.35806/8r45gs31

Keywords:

Additive manufacturing, FDM, Micro punch, Polylactic Acid

Abstract

Fused deposition modeling (FDM) 3D printing is one of the additive manufacturing processes that can make components with complex shapes, require no tools, are cheap, safe, and have  minimal waste. Despite all the advantages of the FDM process, the inability of this technique to create holes on a micro scale can be a problem and limits its application. In this research, a combination of FDM and machining processes was carried out, where micro holes in FDM printed components were created using a punching process. The punching process is carried out by varying pressure and speed. Furthermore, the diameter of the hole and the quality of the sheared edge of the hole resulting from the punching process were evaluated through observation using an optical microscope. The results show that the holes resulting from the punching process have a better shape and diameter than the FDM process. Then, the analysis of the sheared edge from punching shows that pressure and speed significantly affect the surface quality of the resulting sheared edge, where the quality increases with increasing pressure and speed. In the end, the punching process was proven to create micro-scale holes in FDM-printed polymer, especially at minimum thickness. 

References

Adib, A. Z., Pratama, J., Badranaya, M. I., Mahardika, M., Suyitno, Salim, U. A., & Arifvianto, B. (2024). Flexural strength of the sandwich-structured parts made of polylactic-acid and thermoplastic-polyurethane fabricated by using extrusion-based multi-material additive manufacturing. The International Journal of Advanced Manufacturing Technology, 132(9-10), 4805–4827. https://doi.org/10.1007/s00170-024-13608-6

Akande, S. O. (2015). Dimensional accuracy and surface finish optimization of fused deposition modelling parts using desirability function analysis. International Journal of Engineering Research and Technology, 4(4), 196–202. https://doi.org/10.17577/IJERTV4IS040393

Aronne, M., Bertana, V., Schimmenti, F., Roppolo, I., Chiappone, A., Cocuzza, M., & Marasso, S. L. (2024). 3D-printed MEMS in Italy. Micromachines, 15(6), 678. https://doi.org/10.3390/mi15060678

Cantı, E., & Aydın, M. (2018). Effects of micro particle reinforcement on mechanical properties of 3D printed parts. Rapid Prototyping Journal, 24(1), 171–176. https://doi.org/10.1108/RPJ-06-2016-0095

Chang, D.-Y., & Huang, B.-H. (2011). Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process. The International Journal of Advanced Manufacturing Technology, 53(9-12), 1027–1037. https://doi.org/10.1007/s00170-010-2882-1

Cheng, L., Zhang, P., Biyikli, E., Bai, J., Robbins, J., & To, A. (2017). Efficient design optimization of variable-density cellular structures for additive manufacturing: Theory and experimental validation. Rapid Prototyping Journal, 23(4), 660–677. https://doi.org/10.1108/RPJ-04-2016-0069

De Pasquale, G. (2021). Additive manufacturing of micro-electro-mechanical systems (MEMS). Micromachines, 12(11). https://doi.org/10.3390/mi12111374

Duan, L., Jiang, H., Zhang, X., Li, G., & Cui, J. (2021). Experimental investigations of electromagnetic punching process in CFRP laminate. Materials and Manufacturing Processes, 36(2), 223–234. https://doi.org/10.1080/10426914.2020.1819546

Engel, U., & Eckstein, R. (2002). Microforming—from basic research to its realization. Journal of Materials Processing Technology, 125–126(January), 35–44. https://doi.org/10.1016/S0924-0136(02)00415-6

Garg, A., Bhattacharya, A., & Batish, A. (2016). On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Materials and Manufacturing Processes, 31(4), 522–529. https://doi.org/10.1080/10426914.2015.1070425

Gómez-Gras, G., Pérez, M. A., Fábregas-Moreno, J., & Reyes-Pozo, G. (2021). Experimental study on the accuracy and surface quality of printed versus machined holes in PEI Ultem 9085 FDM specimens. Rapid Prototyping Journal, 27(11), 1–12. https://doi.org/10.1108/RPJ-12-2019-0306

Gurr, M., & Mülhaupt, R. (2012). Rapid prototyping. In Polymer Science: A Comprehensive Reference (Vol. 8, pp. 77–99). Elsevier. https://doi.org/10.1016/B978-0-444-53349-4.00202-8

Ivey, M., Melenka, G. W., Carey, J. P., & Ayranci, C. (2017). Characterizing short-fiber-reinforced composites produced using additive manufacturing. Advanced Manufacturing: Polymer & Composites Science, 3(3), 81–91. https://doi.org/10.1080/20550340.2017.1341125

Jami, H., Masood, S. H., & Song, W. Q. (2013). Dynamic response of FDM made ABS parts in different part orientations. Advanced Materials Research, 748, 291–294. https://doi.org/10.4028/www.scientific.net/AMR.748.291

Joo, B. Y., Rhim, S. H., & Oh, S. I. (2005). Micro-hole fabrication by mechanical punching process. Journal of Materials Processing Technology, 170(3), 593–601. https://doi.org/10.1016/j.jmatprotec.2005.06.038

Keleş, Ö., Blevins, C. W., & Bowman, K. J. (2017). Effect of build orientation on the mechanical reliability of 3D printed ABS. Rapid Prototyping Journal, 23(2), 320–328. https://doi.org/10.1108/RPJ-09-2015-0122

Kibe, Y., Okada, Y., & Mitsui, K. (2007). Machining accuracy for shearing process of thin-sheet metals-Development of initial tool position adjustment system. International Journal of Machine Tools and Manufacture, 47(11), 1728–1737. https://doi.org/10.1016/j.ijmachtools.2006.12.006

Krolczyk, G., Raos, P., & Legutko, S. (2014). Experimental analysis of surface roughness and surface texture of machined and fused deposition modeled parts. Tehnički Vjesnik, 21(1), 217–221.

Kurniawan, Y., Mahardika, M., Amrullah, M. H., & Cahyadi, B. (2022). Reducing the punch force in the circular punching process by preheating under the recrystallization temperature. SINERGI, 26(1), 31. https://doi.org/10.22441/sinergi.2022.1.005

Kurniawan, Y., Mahardika, M., & Suyitno. (2020a). Effect of punch velocity on punch force and burnish height of punched holes in punching process of pure titanium sheet. Journal of Physics: Conference Series, 1430(1), 012053. https://doi.org/10.1088/1742-6596/1430/1/012053

Kurniawan, Y., Mahardika, M., Suyitno, & Haritsah Amrullah, M. (2019). Effect of preheating on punch force, sheared surface and work hardening in cold punching process of commercially pure titanium sheet. International Review of Mechanical Engineering, 13(9), 504–512. https://doi.org/10.15866/ireme.v13i9.17398

Kurniawan, Y., Mahardika, M., & Suyitno. (2020b). The effect of punch geometry on punching process in titanium sheet. Jurnal Teknologi, 82(2), 101–111. https://doi.org/10.11113/jt.v82.13947

Kusuma, D. B., Mahardika, M., Pratama, J., Salim, U. A., Cahyono, S. I., & Arifvianto, B. (2022). Metode pencegahan warping dan cacat kualitas permukaan produk fused deposition modelling (FDM). In Conference SENATIK STT Adisutjipto Yogyakarta (Vol. 7, pp. 47–56). https://doi.org/10.28989/senatik.v7i0.455

Masood, S., & Song, W. (2004). Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Materials & Design, 25(7), 587–594. https://doi.org/10.1016/j.matdes.2004.02.009

Petersen, R. S., Boisen, A., & Keller, S. S. (2020). Micromechanical punching: A versatile method for non-spherical microparticle fabrication. Polymers, 13(1), 83. https://doi.org/10.3390/polym13010083

Pratama, J., Cahyono, S. I., Suyitno, Muflikhun, M. A., Salim, U. A., Mahardika, M., & Arifvianto, B. (2023). Process-structure-property relationship in fused deposition modelling of polypropylene parts manufactured using semi-crystalline, high-isotactic-filament feedstock. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(12), 5911–5925. https://doi.org/10.1177/09544062231162997

Pratama, J., Mahardika, M., Suyitno, S., Badranaya, M. I., Adib, A. Z., Wijaya, R., Sandi, A., & others. (2024b). Tensile and flexural properties of PLA/Fe3O4 composite prepared with a novel powder delivery method and fused filament fabrication. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-024-00571-7

Pratama, J., Mayanda, N., & Sugiyanto, D. (2022). Effect of extruder temperature on dimensional accuracy and surface roughness of fused deposition modeled (FDMed) PLA and PLA/wood composite. Rotasi, 24(2), 1–9.

Pratama, J., Suyitno, Badranaya, M. I., Adib, A. Z., Wijaya, R., Sandi, A., Salim, U. A., & others. (2024c). A novel powder addition method for preparing polylactic acid (PLA)-based composite with fused filament fabrication. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-024-13897-x

Pratama, J., Wijaya, R., Salim, U. A., Suyitno, S., Arifvianto, B., Saptoadi, H., & Mahardika, M. (2024a). A novel powder addition method for improving tensile strength of polylactic-acid prepared by using fused filament fabrication (FFF). Applied Mechanics and Materials, 920, 23–34. https://doi.org/10.4028/p-gw2YjX

Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 31(1), 287–295. https://doi.org/10.1016/j.matdes.2009.06.016

Sun, Z., & Velasquez-Garcia, L. F. (2017). Monolithic FFF-printed, biocompatible, biodegradable, dielectric-conductive microsystems. Journal of Microelectromechanical Systems, 26(6), 1356–1370. https://doi.org/10.1109/JMEMS.2017.2746627

Vollertsen, F., Schulze Niehoff, H., & Hu, Z. (2006). State of the art in micro forming. International Journal of Machine Tools and Manufacture, 46(11), 1172–1179. https://doi.org/10.1016/j.ijmachtools.2006.01.033

Zeidi, A., Ben Saada, F., Elleuch, K., & Atapek, H. (2021). On the failure of punching process. Engineering Failure Analysis, 120, 105035. https://doi.org/10.1016/j.engfailanal.2020.105035

Downloads

Published

2024-10-01 — Updated on 2024-10-03

Versions

Issue

Section

Articles

How to Cite

Microhole Creation in FDM-Printed Sheet Polymers: A Punching Process Approach (U. Agus Salim, B. Abdullah, Suyitno, J. Pratama, M. I. Badranaya, R. Wijaya, M. Mahardika, & B. Arifviyanto , Trans.). (2024). Indonesian Journal of Computing, Engineering, and Design (IJoCED), 6(2), 108-118. https://doi.org/10.35806/8r45gs31 (Original work published 2024)