This is an outdated version published on 2024-10-27. Read the most recent version.

Heat Transfer Analysis and Friction Factor of Ternary Nanofluids with Twisted Tape Inserts

Authors

  • Anwar Ilmar Ramadhan Mechanical Engineering Department, University of Muhammadiyah Jakarta, Jakarta, Indonesia
  • Wan Hamzah Azmi 2 Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
  • As Natio Lasman School of Postgraduate Studies, University of Darma Persada, Jl. Taman Malaka Selatan, Jakarta 13450, Indonesia
  • Efrizon Umar National Research and Innovation Agency, Jl. Tamansari No 71 Bandung, 40132, Indonesia
  • Korada Viswanatha Sharma 5Center for Energy Studies, Department of Mechanical Engineering, JNTUH College of Engineering, India

DOI:

https://doi.org/10.35806/ijoced.v6i2.473

Keywords:

Experimental, Friction factor, Heat transfer performance, Ternary nanofluids, Twisted tape

Abstract

This study investigates the heat transfer efficiency and friction factor of ternary nanofluids (Al₂O₃-TiO₂-SiO₂) in a simple tube equipped with a twisted tape. Ternary nanofluids, prepared using a volume-based composition ratio of 20:16:64, were tested at various volume concentrations ranging from 0.5% to 3.0%. Forced convection heat transfer experiments were conducted under varying Reynolds numbers (2,300 to 12,000) and a bulk temperature of 70 °C. The results indicate that the maximum viscosity occurs at a volume concentration of 3.0%. The highest increase in heat transfer for ternary nanofluids in a simple tube with twisted tape (H/D = 2.0) was achieved at a volume concentration of 3.0%, reaching 225.35%. Compared to a plain tube, the average thermal performance factor (TPF) of the twisted tape was significantly improved, with a further increase observed when the volume concentration rose from 2.73% to 3.22%.

 

 

References

Abdalla, A. N., & Shahsavar, A. (2023). An experimental comparative assessment of the energy and exergy efficacy of a ternary nanofluid-based photovoltaic/thermal system equipped with a sheet-and-serpentine tube collector. Journal of Cleaner Production, 395, 136460. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136460

Abdolbaqi, M. K., Azmi, W. H., Mamat, R., Mohamed, N. M. Z. N., & Najafi, G. (2016). Experimental investigation of turbulent heat transfer by counter and co-swirling flow in a flat tube fitted with twin twisted tapes. International Communications in Heat and Mass Transfer, 75, 295–302. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2016.04.021

Adun, H., Kavaz, D., & Dagbasi, M. (2021). Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. Journal of Cleaner Production, 328, 129525. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129525

ADUN, H., Mukhtar, M., Adedeji, M., Agwa, T., Ibrahim, K. H., Bamisile, O., & Dagbasi, M. (2021). Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids. In Energies (Vol. 14, Issue 15). https://doi.org/10.3390/en14154434

Afrand, M., Toghraie, D., & Ruhani, B. (2016). Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: An experimental study. Experimental Thermal and Fluid Science, 77, 38–44. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2016.04.007

Agarwal, S. K., & Raja Rao, M. (1996). Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts. International Journal of Heat and Mass Transfer, 39(17), 3547–3557. https://doi.org/https://doi.org/10.1016/0017-9310(96)00039-7

Ahmed, M. S., & Elsaid, A. M. (2019). Effect of hybrid and single nanofluids on the performance characteristics of chilled water air conditioning system. Applied Thermal Engineering, 163, 114398. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2019.114398

Akbaridoust, F., Rakhsha, M., Abbassi, A., & Saffar-Avval, M. (2013). Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model. International Journal of Heat and Mass Transfer, 58(1), 480–491. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.064

Allahyar, H. R., Hormozi, F., & ZareNezhad, B. (2016). Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid. Experimental Thermal and Fluid Science, 76, 324–329. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2016.03.027

Alosious, S., R, S. S., Nair, A. R., & Krishnakumar, K. (2017). Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al2O3 and CuO nanofluids. Heat and Mass Transfer, 53(12), 3545–3563. https://doi.org/10.1007/s00231-017-2061-0

Azman, A., Yusoff, M. Z., Mukhtar, A., Gunnasegaran, P., A. Hamid, N., & Khai Ching, N. (2021). Numerical Study of Heat Transfer Enhancement for Mono and Hybrid Nanofluids Flow in a Straight Pipe . CFD Letters, 13(2 SE-Articles), 49–61. https://doi.org/10.37934/cfdl.13.2.4961

Azmi, W. H. (2015). Heat transfer augmentation of water based TIO2 AND SIO2 nanofluids in a tube with twisted tape. PhD Thesis.

Azmi, W. H., Sharma, K. V, Sarma, P. K., Mamat, R., & Anuar, S. (2014). Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts. International Journal of Thermal Sciences, 81, 84–93. https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2014.03.002

Azmi, W., Hamid, K., Ramadhan, A., & M. s. a, I. (2021). Thermal hydraulic performance for hybrid composition ratio of TiO2-SiO2 nanofluids in a tube with wire coil inserts. Case Studies in Thermal Engineering, 25, 100899. https://doi.org/10.1016/j.csite.2021.100899

Baby, T. T., & Ramaprabhu, S. (2011). Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale, 3(5), 2208–2214. https://doi.org/10.1039/C0NR01024C

Bahrami, M., Akbari, M., Karimipour, A., & Afrand, M. (2016). An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: Non-Newtonian behavior. Experimental Thermal and Fluid Science, 79, 231–237. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2016.07.015

Bahremand, H., Abbassi, A., & Saffar-Avval, M. (2015). Experimental and numerical investigation of turbulent nanofluid flow in helically coiled tubes under constant wall heat flux using Eulerian–Lagrangian approach. Powder Technology, 269, 93–100. https://doi.org/https://doi.org/10.1016/j.powtec.2014.08.066

Blasius, H. (1913). Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten BT - Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens: insbesondere aus den Laboratorien der technischen Hochschulen (pp. 1–41). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02239-9_1

Boroomandpour, A., Toghraie, D., & Hashemian, M. (2020). A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs- titania-zinc oxide/water-ethylene glycol (80:20) as well as binary and mono nanofluids. Synthetic Metals, 268, 116501. https://doi.org/https://doi.org/10.1016/j.synthmet.2020.116501

Chang, S. W., Yu, K.-W., & Lu, M. H. (2005). Heat Transfers in Tubes Fitted with Single, Twin, and Triple Twisted Tapes. Experimental Heat Transfer, 18(4), 279–294. https://doi.org/10.1080/08916150500201560

Dezfulizadeh, A., Aghaei, A., Hassani Joshaghani, A., & Najafizadeh, M. (2021). Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu–SiO2-MWCNT ternary hybrid nanofluid based on empirical data. Journal of Thermal Analysis and Calorimetry, 147. https://doi.org/10.1007/s10973-021-10867-3

Dezfulizadeh, A., Aghaei, A., Joshaghani, A. H., & Najafizadeh, M. M. (2021). An experimental study on dynamic viscosity and thermal conductivity of water-Cu-SiO2-MWCNT ternary hybrid nanofluid and the development of practical correlations. Powder Technology, 389, 215–234. https://doi.org/https://doi.org/10.1016/j.powtec.2021.05.029

Eiamsa-ard, S., Nivesrangsan, P., Chokphoemphun, S., & Promvonge, P. (2010). Influence of combined non-uniform wire coil and twisted tape inserts on thermal performance characteristics. International Communications in Heat and Mass Transfer, 37(7), 850–856. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2010.05.012

EIAMSA-ARD, S., & WONGCHAREE, K. (2013). Heat transfer characteristics in micro-fin tube equipped with double twisted tapes: Effect of twisted tape and micro-fin tube arrangements. Journal of Hydrodynamics, Ser. B, 25(2), 205–214. https://doi.org/https://doi.org/10.1016/S1001-6058(13)60355-8

Goudarzi, K., & Jamali, H. (2017). Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Applied Thermal Engineering, 118, 510–517. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2017.03.016

Guo, S., Dong, S., & Wang, E. (2008). Gold/Platinum Hybrid Nanoparticles Supported on Multiwalled Carbon Nanotube/Silica Coaxial Nanocables: Preparation and Application as Electrocatalysts for Oxygen Reduction. The Journal of Physical Chemistry C, 112(7), 2389–2393. https://doi.org/10.1021/jp0772629

Hamid, K. A., Azmi, W. H., Nabil, M. F., & Mamat, R. (2017). Improved thermal conductivity of TiO2–SiO2 hybrid nanofluid in ethylene glycol and water mixture. IOP Conference Series: Materials Science and Engineering, 257(1), 12067. https://doi.org/10.1088/1757-899X/257/1/012067

Hamza, N. F. A., & Aljabair, S. (2022). Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger. Heliyon, 8(12), e11950. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e11950

He, Y., Liu, L., Li, P., & Ma, L. (2018). Experimental study on heat transfer enhancement characteristics of tube with cross hollow twisted tape inserts. Applied Thermal Engineering, 131, 743–749. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2017.12.029

Huminic, G., & Huminic, A. (2018). The heat transfer performances and entropy generation analysis of hybrid nanofluids in a flattened tube. International Journal of Heat and Mass Transfer, 119, 813–827. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.155

Jung, J.-Y., Cho, C., Lee, W. H., & Kang, Y. T. (2011). Thermal conductivity measurement and characterization of binary nanofluids. International Journal of Heat and Mass Transfer, 54(9), 1728–1733. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.021

Kashyap, S., Sarkar, J., & Kumar, A. (2021). Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids. Energy, 225, 120199. https://doi.org/https://doi.org/10.1016/j.energy.2021.120199

Kumar, V., & Sahoo, R. R. (2022). 4 E’s (Energy, Exergy, Economic, Environmental) performance analysis of air heat exchanger equipped with various twisted turbulator inserts utilizing ternary hybrid nanofluids. Alexandria Engineering Journal, 61(7), 5033–5050. https://doi.org/https://doi.org/10.1016/j.aej.2021.09.037

Kundan, L., & Darshan, M. B. (2022). Performance investigation of a concentric double tube heat exchanger using twisted tape inserts and nanofluid. Particulate Science and Technology, 40(3), 307–324. https://doi.org/10.1080/02726351.2021.1946729

Lee, J. K., Koo, J., Hong, H., & Kang, Y. T. (2010). The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. International Journal of Refrigeration, 33(2), 269–275. https://doi.org/https://doi.org/10.1016/j.ijrefrig.2009.10.004

Manglik, R. M., & Bergles, A. E. (1993). Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II—Transition and Turbulent Flows. Journal of Heat Transfer, 115(4), 890–896. https://doi.org/10.1115/1.2911384

Mousavi, S. M., Esmaeilzadeh, F., & Wang, X. P. (2019). Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 137(3), 879–901. https://doi.org/10.1007/s10973-019-08006-0

Muzaidi, N. A. S., Fikri, M. A., Wan Salihin Wong, K. N. S., Mohammad Sofi, A. Z., Mamat, R., Mohd Adenam, N., Mat Yunin, M. Y. A., & Adli, H. K. (2021). Heat absorption properties of CuO/TiO2/SiO2 trihybrid nanofluids and its potential future direction towards solar thermal applications. Arabian Journal of Chemistry, 14(4), 103059. https://doi.org/https://doi.org/10.1016/j.arabjc.2021.103059

Naik, M. T., Fahad, S. S., Syam Sundar, L., & Singh, M. K. (2014). Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Experimental Thermal and Fluid Science, 57, 65–76. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2014.04.006

Ramadhan, A., Azmi, H., Mamat, R., Diniardi, E., & Hendrawati, T. (2021). Experimental Investigation of Cooling Performance in Automotive Radiator using Al2O3-TiO2-SiO2 Nanofluids. Automotive Experiences, 5, 28–39. https://doi.org/10.31603/ae.6111

Ramadhan, A. I., Azmi, W. H., Sharma, K. V., & Umar, E. (2022). Experimental Investigation of Thermal Properties of Ternary Nanofluids in Water-Ethylene Glycol (60: 40) Mixture. Journal of Applied Sciences and Advanced Technology, 5(1), 13–26.

Ramadhan, A. I., Umar, E., Azmi, W. H., & Sari, A. M. (2024). Heat transfer performance of Al2O3-TiO2-SiO2 ternary nanofluids in plain tube with wire coil inserts. Journal System of Mechanical Engineering for Society and Industry (MESI), 4(1).

Sahoo, R. R. (2021). Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 146(2), 827–839. https://doi.org/10.1007/s10973-020-10039-9

Sahoo, R. R., & Kumar, V. (2020). Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. International Communications in Heat and Mass Transfer, 111, 104451. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2019.104451

Sarada, N., Raju, A. V, Radha, K., & Sunder, L. (2010). Enhancement of heat transfer using varying width twisted tape inserts. International Journal of Engineering, Science and Technology, 2. https://doi.org/10.4314/ijest.v2i6.63702

Sarkar, J., Ghosh, P., & Adil, A. (2015). A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164–177. https://doi.org/https://doi.org/10.1016/j.rser.2014.11.023

Sarma, P. K., Subramanyam, T., Kishore, P. S., Rao, V. D., & Kakac, S. (2002). A new method to predict convective heat transfer in a tube with twisted tape inserts for turbulent flow. International Journal of Thermal Sciences, 41(10), 955–960. https://doi.org/https://doi.org/10.1016/S1290-0729(02)01388-1

Sarma, P. K., Subramanyam, T., Kishore, P. S., Rao, V. D., & Kakac, S. (2003). Laminar convective heat transfer with twisted tape inserts in a tube. International Journal of Thermal Sciences, 42(9), 821–828. https://doi.org/https://doi.org/10.1016/S1290-0729(03)00055-3

Saysroy, A., & Eiamsa-ard, S. (2017). Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. International Journal of Thermal Sciences, 121, 55–74. https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2017.07.002

Shah, N. A., Wakif, A., El-Zahar, E. R., Thumma, T., & Yook, S.-J. (2022). Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana-Baleanu time-fractional integral. Alexandria Engineering Journal, 61(12), 10045–10053. https://doi.org/https://doi.org/10.1016/j.aej.2022.03.048

Sharma, K. V, Sundar, L. S., & Sarma, P. K. (2009). Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. International Communications in Heat and Mass Transfer, 36(5), 503–507. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2009.02.011

Singh, S., & Sarkar, J. (2020). Improving hydrothermal performance of double-tube heat exchanger with modified twisted tape inserts using hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 143. https://doi.org/10.1007/s10973-020-09380-w

Smithberg, E., & Landis, F. (1964). Friction and Forced Convection Heat-Transfer Characteristics in Tubes With Twisted Tape Swirl Generators. Journal of Heat Transfer, 86(1), 39–48. https://doi.org/10.1115/1.3687060

Sundar, L. S., & Sharma, K. V. (2010). Turbulent heat transfer and friction factor of Al2O3 Nanofluid in circular tube with twisted tape inserts. International Journal of Heat and Mass Transfer, 53(7), 1409–1416. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016

Sundar, L. S., Singh, M. K., & Sousa, A. C. M. (2014). Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer, 52, 73–83. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012

Zeng, J., & Xuan, Y. (2018). Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Applied Energy, 212, 809–819. https://doi.org/https://doi.org/10.1016/j.apenergy.2017.12.083

Downloads

Published

2024-10-27 — Updated on 2024-10-27

Versions

Issue

Section

Articles

How to Cite

Heat Transfer Analysis and Friction Factor of Ternary Nanofluids with Twisted Tape Inserts (A. I. Ramadhan, W. H. Azmi, A. N. Lasman, E. Umar, & K. V. . Sharma , Trans.). (2024). Indonesian Journal of Computing, Engineering, and Design (IJoCED), 6(2), 142-159. https://doi.org/10.35806/ijoced.v6i2.473